MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Satbayev University

Institute of Architecture and civil engineering named after T. Basenov

Department of Civil engineering and building materials

Asim Poya

« College building with the use of kinematic supports in Almaty »

To the diploma project **EXPLANATORY NOTE**

Specialty 5B072900 – Civil Engineering

Almaty 2021

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Satbayev University

Institute of Architecture and civil engineering named after T. Basenov

Department of Civil engineering and building materials

ALLOWED TO PROTECT

Head of Department Master of technical science, lecturer _____N.V. Kozyukova «___»____2021 yr.

EXPLANATORY NOTE

to the diploma project

On the theme of $\$ « College building with the use of kinematic supports in Almaty »

5B072900 - "Civil Engeneering"

Prepared by

Scientific adviser

Asim Poya

Z.M. Zhambakina Candidate of technical science, Assistant professor «_____2021 yr.

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Satbayev University

Institute of Architecture and Civil Engineering named after T. Basenov

Department of Civil engineering and building materials

Specialty 5B072900 - Civil Engineering

I APPROVE

Head of Department _____N.V. Kozyukova Master of technical science, lecturer «___»____20__ yr.

ASSIGNMENT Complete a diploma project

Student Asim Poya

Topic: «College building with the use of kinematic supports in Almaty»

Approved by the Order of the Rector of the University No. 2131-b dated November 24, 2020.

The deadline for the completed work is May 10, 2020.

Initial data for the diploma project: construction area in Almaty

Structural schemes of the building - frame-wall with cross-beams, structures are made of monolithic reinforced concrete, architectural solution.

List of questions to be developed:

a) Architectural and analytical part: basic initial data, space-planning solutions, heat engineering calculation of enclosing structures (outer wall), lighting calculation, calculation of the foundation option and depth of laying, justification of energy efficiency measures;

b) Calculation and design part: calculation and design of a column and slab;

c) Organizational and technological part: development of technological maps, construction schedule and construction plan;

d) Economic part: local estimate, object estimate, summary estimate;

List of graphic material (with exact indication of required drawings):

1 Facade, standard floor plans, parts 1-1 and 2-2 - 4 sheets;

2 KZh columns, specifications - 1 sheet;

3 Technical maps of reinforcing bar works, calendar plan, construction site plan - 4 sheets.

11 slides of work presentation are provided.

Recommended main literature:

1 SP RK 2.04-01-2017 "Construction climatology";
2 SN RK 2.04-04-2013 "Construction heat engineering", SN RK 2.03-30-2017 "Construction in seismic zones".

SCHEDULE preparation of thesis (project)

Part	30%	60%	90%	100%	Note
Architectural and analytical	11.01.2021г 14.02.2021г.				
Calculation and design		15.02.2021г 23.03.2021г.			
Organizational and technological			24.03.2021г 01.05.2021г.		
Economic				01.05.2021г 09.05.2021г.	
Pre-defense		10.0	5.2021r14.05.20	21г.	
Anti-plagiarism, norm control	17.05.2021г31.05.2021г				
Quality control	26.05.2021г31.05.2021г.				
Defense	01.06.2021г11.06.2021г.				

Signatures

consultants and the normative controller for the completed diploma work (project) with an indication of the parts of work (project) related to them

Name parts	Consultants, I.O.F. (academic degree, rank)	the date signing	Signature
Architectural and analytical	Zhambakina Z.M., Candidate of technical science, assistant professor		
Calculation and design	Zhambakina Z.M., Candidate of technical science, assistant professor		
Organizational and technological	Kyzybayev N.K., Master of technical science, lecturer		
Economic	Zhambakina Z.M., Candidate of technical science, assistant professor		
Norm controller	Bek A.A., Master of technical science, assistant		
Quality control	Kozyukova N.V., Master of technical science, lecturer		

Scientific adviser

_____ Z.M. Zhambakina

The task was accepted for execution student

_____ Asim Poya

Date

"____" _____ 2021 yr.

АҢДАТПА

Университеттердің құрылысы білім беруде, зерттеулерде және технологияларда маңызды рөл атқарады. Бұл жоба төрт негізгі бөлімнен тұрады

1) Сәулет ережелері бойынша айырмашылықтары мен шешімдері бар төрт айырмашылық жоспары бар сәулет бөлігі

2 ETABS инженерлік бағдарламасымен есептелетін жобалау бөлігі және стандарттарға немесе ғимараттың орналасуына қатысты таңдалған материалдарға қатысты негізгі жүктемелер.

3. Ғимаратта салу тәсілін көрсететін технологиялық бөліктер.

4. Құрылыстың құнын анықтайтын сметалық бөлігі.

АННОТАЦИЯ

Строительство университетов играет важную роль в образовании, исследованиях и технологиях. Этот проект состоит из четырех основных частей.

1. Архитектурная часть, состоящая из четырех разностных планов с разностными площадями и решениями в соответствии с архитектурными правилами.

2. Расчетная часть, которая рассчитывается инженерной программой ETABS, и основные нагрузки на материалы, которые уже были выбраны с учетом стандартов или местоположения здания.

3. Технологические части, которые покажут способ постройки в здании.

4. Сметная часть, определяющая стоимость здания.

ANNOTATION

Build of the Universities play an important role in education, research and technology. This project has four main parts

1. The architectural part which contains of four difference plan with difference area and solution regarding to architectural rules

2. Design part which is calculate it by the ETABS engineering program and the basic loads regarding the materials which were chosen already regarding standards or building location.

3. Technological parts which going to show the way of constructing in the building.

4. The estimated part which is define the building cost.

CONTENT

Introduction	7
1 Achitectural and analytical	8
1.1 Decision of general plan	10
1.2 Constructive solution	10
2 Structural part	12
2.1 Basic loads calculation	12
2.2 Calculation of rectangular slab	15
2.3 Calculation of rectangular	20
3 Technological part	23
3.1 development of work plan	23
3.2 Removal top soil	27
3.4 Installation of reinforcement	29
3.5 Schedule of work	30
4 Economic part	31
Conclusion	34
List of References	35
Appendix A	36
Appendix B	
Appendix C	

INTRODUCTION

The goal of university education has always been the creation, transfer and implementation of knowledge. Knowledge in its current form is at the heart of the processes shaping modern society; today higher education and research are key elements of sustainable biological development of culture, social economy, individuals, societies and countries.

And building of the Universities play an important role in education and training, education, research and technology. In the field of education, universities provide specific training for high-level study and training necessary for personal development. The role of the university is crucial for all disciplines, both social and legal. Graduates of all disciplines also need knowledge of sustainable development. Universities gain the new knowledge and skills needed to address sustainable development issues in society, raise awareness, make informed decisions, provide conditions for responsible behavior and consumer choice. Universities are considered as important institutions in the process of social change and development. The most important task assigned to them is the training and research results of highly qualified personnel in order to achieve the determined goals. Another role that universities can play is the creation of new institutions in civil society, the development of new cultural values, and the formation and socialization of people in a new social era. This document focuses not only on a legal perspective, but also on the role of universities in promoting economic, political, social and cultural change in society. It also describes the impact of education on social change.

The project is going to build in the Almaty, Kazakhstan (st.Gabdullin, 5). The project is kind of university about nine floors, Aside of its population, Almaty has the wonderful climate.

1 Architectural Part

1.1 Architectural planning solution

The exact configuration starts with measuring the basic (overall) dimensions of the components of the structure of the frame. Vertical dimensions are fixed on the base. The horizontal part is related to the length of the building.

The collapsed remnants of the transitional frame are very intact and firmly attached to the central pillars. And the slabs going to be design as there supports. And in Display properties include position selection between frame and column, orientation of main tree, etc. Contains. These factors include construction objectives, design and design decisions, technical and economic drawings, etc.

The college going to build in Almaty Kazakhstan, the average temperature of Almaty city is 10*Celsius* with the 1.1m/s average wind speed.

As it's a college building and in the partition should be considered standard of architecture like from universities or colleges standards.

The outside wall of the building is with the width of 0.35m and the inner walls are with the 0.25m (brick masonry wall), the floors thickness is 20cm according the required code for buildings.

And the column size are (45x60), (45*55), (45*45), (35*50). From the first up to third floor is with the cross section area of 45*60, from fourth to five 45*55, and others 45*45 and the last story is 35*50.

The architecture reference instruction take out from the <u>Kazakhstan national</u> code 3.02-10-2011

Lecture hall chairs

A combination of folding and swivel chairs, chairs with a backrest and a table (with a hook for hanging a box (frame) or bag) are often fixed. The order of placement varies from style to style based on people, number of students and type of education (slide show facilities and electronic audio facilities). Some lecture halls (mathematic, chemistry and physics) have sloping chair rows, the space required for each student depends on the type of chair, the depth of the desk and the slope of the floor. The required space for each student is equal to $1.10 m^2$ in small halls and in normal conditions $0.8-0.95 m^2$ includes all the moving spaces in larger lecture halls in a cramped position.

Projections, boards, sound features, projection screen brightness

Black-and-white boards can be placed on separate surfaces or fixed directly on the wall. Wall panels in multiple pieces, often moving vertically, manually or mechanically, can be pulled down to the projection range. It is also possible to use wheeled boards or monitors. The sound of the speech should be as uniform as possible without any disturbance such as the return of the sound to the listener. Suspended ceilings help reflect and absorb sound. The back walls should be covered with soundabsorbing materials and the other walls should remain as simple as possible.

Seminar rooms and design services Lecture halls and seminar rooms must comply with executive regulations. Wheelchair users should ensure that there is adequate space in the lecture hall in accordance with the standards.

Lecture Room Service Rooms Each lecture hall should have a side room with direct access. These rooms do not have a fixed use and can be used as storage. Sufficient space for ceremonies should be located next to all lecture halls for experiments at the same level and lead to a short path to the balcony. Instructions for the minimum size of a rectangular lecture hall is about 0.25-0.2 m per person and for trapezoidal plans 0.18 m - 15.5 m per person and in natural science halls per clinical sample. 0.3m - 0.2 per person The space required for storage and staff rooms is essential for the proper functioning of lecture halls A room for technical staff to store equipment, a room for laundry staff, a storage room for Interchangeable components such as lamps, bulbs and moonlights, blackboards and clothes, the minimum size of each room is 15m and the total space required for the side rooms is at least equal - 50-60m

Computer rooms

Computer rooms depends on the number and size of the computer desk also the size of transformer display

General educational rooms

Seminar rooms have a normal size of 20,40,50,60 chairs, have double movable desks with a length of 1,2m, a depth of 0.6 m and the space required for each student is 1.9-2m. How to arrange the tables for training and group work is different. If free ventilation is provided through an external wall, the depth of the room should not exceed the exact ceiling height of 2.5m.

Office science members

Teacher rooms dimension $20-24m^2$

Scientific Assistance rooms dimension $15m^2$

Assistance rooms dimension $20m^2$

Secretary rooms dimension 15 (for two = $20 m^2$)

Dressing rooms and toilets

At least it should be consider (0.15-0.16) m^2 per seat

Library

Library with free Access It is possible to store 20,000 to 30,000 volumes of books freely on the shelves.

Book storage

Bookcase with 6-7 shelves has a height of 2m (accessible height) the distance between the bookshelves is 1.6-1.5 m. The required space is 1-1.2 m per 200 volumes of books.

Study area in library

With the width (0.9-1) m depth , 0.8m required space to

(2.4 - 2.5) m per checkpoint at the entrance with storage of books and packages, catalogs, Copy room.

1.2 Decision of general plan

The land allocated for the construction of a college for education in Almaty city in the newly developed area of the city and on the construction site will be built.

The area is free from the construction of utilities the construction site is characterized by the following data and values:

- Not flooded by floods and other surface waters;

- Prevailing wind-east.

Transport services are provided by existing roads. The building is surrounded by hard pavements.

The dimensions of the elements of the master plan include utilities, roads, taking into account the placement of sidewalks, landscaping elements, as well as in accordance with sanitary and fire safety norms and regulations.

0.2 m thick for restoration before construction. It is planned to remove the vegetation layer. Orientation of the premises meets the standards.

1.3 Constructive solution

The college going to build in Almaty Kazakhstan, the average temperature of Almaty city is 10°C with the 1.1m/s average wind speed.

Constructive solutions

Monolithic reinforced concrete frame for the frame of the building in construction applied.

The lifting structures of the building are designed of monolithic reinforced concrete.

The frame scheme - frame system was accepted as the design scheme of the building.

Structural strength and stability of the building, joint operation of beams. Column pitch -the variable varies according to the architectural solution.

The cross section of the columns was taken differently in height and section:

This project is a monolith made of C30 / 37 class concrete, slab contraction joints should intersect at the openings for columns. Frame dimensions of the cross section of the elements: made of concrete of class C30/ 37crossba 450x60), (450, 550) (450, 450) (450

(450x550), (450 x500), (450x450) mm (bxh), the height of the cross section of the columns variable.

Slab contraction joints should intersect at the openings for columns 200 mm and 200 mm reinforced concrete.

Stairs made of monolithic reinforced concrete.

Place for reinforcement, S500 class hot-rolled steel fittings according to 5781-82 applied. Enclosure construction on standard floors 75 marks made of heat block (200mm).

The partitions are also made of brick around the building made of 80 mm thick concrete with a width of 1000 mm, sand base with a thickness of 100 mm, impregnating two layer bitumen until complete saturation the floor is installed.

Reinforced concrete elements in contact with the soil 2 times with hot bitumen should be lubricated.

Floors:

1) in the playground and administrative rooms – parquet;

2) Sanitary facilities and bathrooms have ceramic tiles;

3) in vestibules, elevator halls, main entrance vestibule-granite tiles;

4) Stair railings, loggias, electrical panels and garbage collection.

In the chambers - ceramic tiles.

Doors are decorated with valuable species of wood. Built-in cabinets and mezzanines are covered with plywood and knife painted twice with clear matte varnish.

2 Structural part

2.1 basic loads calculation

For calculation of deal load of building we need to have the thickness of slabs and the material density that we are going use in our building .We calculate load in tabular form table 2.1

Table 1 - Collecting of loads In the Appendix B

2.1.1 Live loads of building

For calculation in programs we need to take them out from the codes

Categories of	Specific use	Example
use		
Category		
А	Area for domestic and residential	Residential buildings
	activities	
В	Office area	
С	Areas where people may Cong	University, college,
	rate	coffee etc
D	Shopping areas	Markets

Table 2 I	ive	loads	category
1 auto 2 1		ioaus	category

My buildings in category C (C1) so we choose load from the table 2.3 which is equal to 2KN

Table 3 Live loads measure regarding to EURO CODE

Categories of loaded area	KN/m^2	KN
Category A		
-floors	1.5 to 2	2.0 to 3.0
-stairs	2.0 to 4.0	2.0 to 4.0
-balcony	2.5 to 4.0	2.0 to 3.0
Category B	2.0 to 3.0	1.5 to 4.5
Category C		
-C1	2.0 to 3.0	3.0 to 4.0
-C2	3.0 to 4.0	2.5 to 7.0 (4.0)
-C3	3.0 to 5.4	4.0 to 7.0
-C4	4.5 to 5.0	3.5 to 7.0
-C5	5.0 to 7.5	3.5 to 4.5
Category D		

-D1	4.0 to 5.0	3.5 to 7.4 (4.0)
-D2	4.0 to 5.0	3.5 to 7.0

2.1.2 Calculation of Snow Load

For the determining snow load we need to know the our area zone so it's on II category

$$\mathbf{S} = \boldsymbol{\mu}_{\mathbf{i}} \cdot \mathbf{C}_{\mathbf{e}} \cdot \mathbf{C}_{\mathbf{t}} \cdot \mathbf{S}_{\mathbf{k}} \tag{1}$$

where S_{K} - calculation value of the extreme snow load on the ground =0.8KPa;

Ce- the environmental coefficient or exposure factor if protected =1.2Regarding to the zone ;

 C_t - the temperature coefficient if heated = 1;

 μ_i - coefficient of snow load form for general buildings=1.

 $S = 1 \cdot 1.2 \cdot 1 \cdot 0.8 = 1 \text{ KPa}$

The combination of effects of actions to be considered should be based on

- The design value of the leading variable action, and

- The design combination values of accompanying variable actions We can have the following formula [6]:

 $\sum \gamma_{G,\,JGK,J} + \gamma_P P + \gamma_{Q,1} Q_{K,1} + \sum \gamma_{Q,i} \psi_{0,i} Q_{k,i}$

Where for permanent ($\gamma_{G,I}$) we have 1.35 for variable(floor $\gamma_{Q,1}$) we have 1.5 and for $\gamma_{Q,I}$ we have 1.5.0.5=0.75.

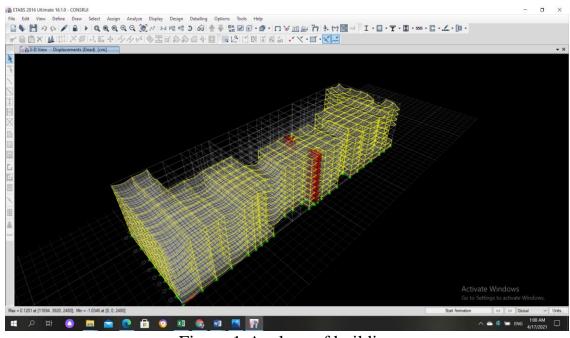


Figure 1-Analyse of building

More explanation on the application 2

2.2 Design of rectangular slab

Estimated span. The one end support is cantilever, simply support and other end is connected T_o establish the design span, the slabs are preset by the dimensions of the crossbar according to the formula 2 [1]:

$$h_p = \left(\frac{1}{18}\right) \cdot l_1 \tag{2}$$

where l_1 – column spacing, cm.

$$h_p = (\frac{1}{18}) \cdot 940 = 52 \text{ cm}$$

According to the unification requirement, we can't take it less than 55cm so we take the crossbar height 55cm.

Preliminary beam width according to formula 3 [1]:

$$b = (0.3 - 0.4) \cdot h_p \tag{3}$$

where h_p – cross-sectional height of the girder, cm

$$b = 55 \cdot 0.4 = 22 \text{ cm}$$

According to the unification requirement and considering more safety requirements we take the crossbar with the width of 35 cm.

$$l_0 = l_2 - \frac{b}{2},$$
 (4)

where
$$l_2$$
 – span of the building, cm;

b – Cross-sectional width of the crossbar, cm

$$l_0 = 8.4 - \frac{0.35}{2} = 8.2 \text{ M}$$

Collection of loads. Calculation of loads per 1 m^2 of flooring is given in accordance with table 2.1.

Design load per 1 m with a slab width of 0.2 m, taking into account the safety factor for the purpose of the building $\gamma_n = 0.95$:

Constant $g=2 \cdot 0.2 \cdot 0.95=3.5$ KN /M;

Complete $g+v = (1.2 \cdot 2.0) \cdot 0.95 = 5.49 \text{ kN} /\text{M}; v=1.2 \cdot 2.0 \cdot 0.95 = 2.28 \text{kN} /\text{M}.$ Including permanent and long-term $6.49 \cdot 2 \cdot 0.95 = 12.33 \text{ kN} /\text{M}$

2.2.1 Efforts from design and standard loads

The bending moment of the design load is determined by the Etabs program we choose from there for calculating other values.

M == 52 kN/m

The shear forces also chosen from the Etabs results .

Q = 17.5 kN

From standard full load:

From standard constant and long-term loads:

2.2.2 Determining the dimensions of the slab section

The height of the section of a hollow-core (10 round voids with a diameter of 15 cm) slab according to the 7 [1]:

$$h = \frac{l_0}{30} \tag{7}$$

where l_0 - calculated span;

 $h = \frac{820}{30} \approx 26 \text{ cm}$

The working height of the section is determined by the formula [1]:

$$h_0 = h - c_1 \tag{8}$$

where h – section height c_1 - protective layer

$$h_0 = 26 - 3 + 3 = 20 \text{ cm}$$

Dimensions: thickness of the upper and lower shelves 3 cm. Width of ribs: medium-4 cm, extreme ribs - 5 cm.In calculations for the limiting states of the first group, the calculated thickness of the compressed T-section flange $h_f'=3$ cm; attitude $h_f'/h=3/26=0.11>0.1$, in this case, the entire width of the shelf is taken into account $b_f'=200$ cm; design rib width $b=\frac{840}{20}=42$ cm. Should not be less then 55cm

Strength characteristics of concrete and reinforcement. Restressed reinforcement: $\sigma_{sp}=0.75 \cdot 820=615$ MPa. The condition is checked. With the electro thermal tensioning method $p=\frac{30+360}{l}=\frac{30+360}{8.4}=46$ MPa; $\sigma_{sp}+$ $p=615+46=661<R_{sn}=840$ MPa - the condition is met. The plan and side views are shown in accordance with Figure 2.1.

2.2.3 Calculation of longitudinal working reinforcement

Characteristic resistance of concrete class C30 /37 to axial compression f_{ck} = 30MPa. Partial safety factor for concrete $\gamma_c = 1.5$.

The design resistance of concrete to axial compression is determined by the formula 2.8 [3]:

$$f_{cd} = a_{cc} \cdot \frac{f_{ck}}{\gamma_c} \tag{9}$$

$$f_{cd} = 0.85 \cdot \frac{30}{1.5} = 17 \text{ MPa}$$

Characteristic tensile strength of working reinforcement class $S500f_{yk} = 500$ MPa. The design tensile strength of the working reinforcement is determined by the formula 2.9 [3]:

$$f_{yd} = \frac{f_{yk}}{\gamma_s} \tag{10}$$

$$f_{yd} = \frac{500}{1.15} = 434.78 \text{ MPa}$$

A variable uniformly distributed load is applied to the slab $q_k = 17 \text{ KN/m}$ and constant $g_k = 2 \text{ KN /m}$.

The design section of the slab is shown in accordance with Figure 2.2.

Effective cross-section width $b_{eff} = 2.0$ M.

Working section height according to the formula 2.6 [3]:

$$\mathbf{d} = \mathbf{h} - c_1 \tag{11}$$

$$d = 230 - 30 = 200 \text{ mm}$$

We determine the value of the coefficient is determined by the formula 2.12

$$\alpha_{Ed} = \frac{M_{Ed}}{f_{cd} \cdot b_{eff} \cdot d^2} \le \alpha_{Eds,lim}$$
(12)

Where d - working section height

$$\alpha_{Ed} = \frac{100 \cdot 10^6}{17 \cdot 1000 \cdot 200^2} = 0.14 \le 0.372$$

According to the table. A.1. Appendix A [3] for normal concrete \leq C50/60; $\alpha_{Ed} = 0.1 \text{ M} \sigma_{sd} = f_{yd} = 434 \text{ MPa} \rightarrow \omega = 0.14, \xi = \frac{x}{d} = 0.14. N_{Ed} = 0$

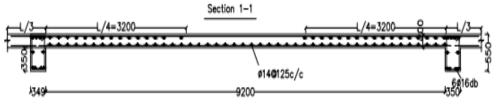


Figure 2 - Design section of the slab

The relative height of the compressed zone is determined by the formula 13[3]:

$$\mathbf{x} = \boldsymbol{\xi} \cdot \boldsymbol{d} < \boldsymbol{h}_f \tag{13}$$

 $x = 0.14 \cdot 175 = 28 \text{ mm} < 30 \text{ mm}$

Since the neutral axis is located within the shelf. In this regard, further calculation is carried out as a rectangular section with dimensions $b = b_{eff} = 2000 \text{ mm}$, d =175 mm.

Required area of tensile reinforcement according to formula 2.13 [3]:

$$A_{s1} = \omega \cdot b_{eff} \cdot \frac{d}{\frac{f_{yd}}{f_{cd}}}$$
(14)

$$A_{s1} = 0.14 \cdot 200 \cdot \frac{175}{\frac{434}{17}} = 1370 \ mm^2 = 13.7 \ cm^2$$

The area of the working reinforcement is taken according to the range of bar reinforcement is 9th rebar 14mm and the mark is S500 and placing the reinforcing is in every 200mm: (9 \emptyset 14) S500 ($A_{s1} = 13.7 \text{ cm}^2$).

2.2.4 Calculation of transverse reinforcement

Characteristic tensile strength of transverse reinforcement class $S500f_{y\omega} = 500$ MPa. Design tensile strength of transverse reinforcement according to the formula 15 [3]:

$$f_{y\omega d} = \frac{f_{y\omega k}}{\gamma_s} = \frac{500}{1.15} = 434 \text{ MPa}$$

The length of the section on which the transverse reinforcement must be installed according to the calculation is determined from the diagram of the shear forces.

To do this, we determine the lateral force that concrete can perceive according to the formula 16 [3]:

$$V_{Rd,c} = \left[\left(\frac{0.18}{\gamma_c} \right) \cdot k \cdot \left(100\rho_l \cdot f_{ck} \right)^{\frac{1}{3}} \right] \cdot b_\omega \cdot d \tag{16}$$

$$k = 1 + \sqrt{\frac{200}{d}} \le 2 \tag{17}$$

where f_{ck} -

$$k = 1 + \sqrt{\frac{200}{175}} = 2.02$$

$$\rho_l = \frac{A_{s1}}{b_{\omega}d} \le 0.02 \tag{18}$$

$$\rho_l = \frac{1370}{2000 \cdot 175} = 0.003 < 0.02$$
$$V_{Rd,c} = \left[\left(\frac{0.18}{1.5} \right) \cdot 2 \times (100 \cdot 0.0035 \cdot 30)^{\frac{1}{3}} \right] \cdot 2000 \cdot 175 = 183.9 \text{ KN};$$
But not less $V_{Rd,c,min}$ according to the formula 19 [3]:

$$V_{Rd,c,min} = \left[0.035 \cdot k^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}} \right] \cdot b_{\omega} \cdot d = \left[0.035 \cdot 2^{\frac{3}{2}} \cdot 30^{\frac{1}{2}} \right] \cdot 2000 \cdot 175 = 189.21 \text{ kN};$$

Insofar as $V_{Ed,max} < V_{Rd,c,min}$; 50 KN < 183.9 kN we install transverse reinforcement based on design considerations.

The step of the transverse reinforcement is determined by the formula 20 [3]:

$$s \le 0.75d \tag{20}$$

$$s \le 0.75 \cdot 175 = 130$$
 mm

The layout of the transverse bars is shown in accordance with Figure 2.3.

The rebar's for the tensile force is the same as rebar we used in the moment part: $9\emptyset 14S500 \ (A_{s1} = 13.7 \ cm^2).$

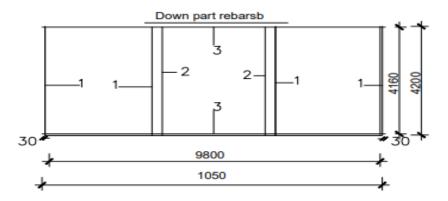


Figure 3 - slab steel design

2.3 Calculation rectangular column

2.3.1 Determination of longitudinal forces from design loads

Load area of the middle column with a grid of columns $9 \cdot 4.2 = 37.8 \text{m}^2$. Constant load:

- From overlapping according to the formula from 21 [1]:

$$N_1 = \gamma_n g \tag{21}$$

where g – constant floor load, which is equal to 2kN;

 $A_{\rm rp}$ – middle column cargo area.

$$N_1 = 0.95 \cdot 2 \cdot 37.8 = 71.82$$
 kN

- From the crossbar according to the formula from 22 [4]:

$$N_2 = \gamma_n \cdot \gamma_f h_p b_p L_p \rho \tag{22}$$

where γ_f – Coefficient equal to 1.1;

 $h_{\rm p}$ – Crossbar height;

 $b_{\rm p}$ – Crossbar width;

 $L_{\rm p}$ – Crossbar length;

 ρ – reinforced concrete density.

$$N_2 = 0.95 \cdot 1.1 \cdot 0.6 \cdot 0.45 \cdot 27 \cdot 22 = 167.5 \text{ KN},$$

- Column dead weight according to the formula from 23 [4]:

$$N_3 = \gamma_n \gamma_f h_{\kappa} b_{\kappa} H_f \rho \tag{23}$$

where h_{κ} – Column section height;

 $b_{\rm p}$ – Column section width;

 H_f – Floor height.

 $N_3 = 0.95 \cdot 1.1 \cdot 3 \cdot 0.45 \cdot 0.6 \cdot 22 = 18.62 \text{ kN}$ - From the coating is determined by the formula from 24 [4]:

$$N_4 = \gamma_n \gamma_f g_{\text{покр}} A_{\text{гр}} \tag{24}$$

where g_c – temporary load from the coating.

 $N_4 = \gamma_n \gamma_f g_{\text{покр}} A_{\text{гр}} = 0.95 \cdot 1.1 \cdot 1.5 \cdot 37.8 = 52.9$ кN, The total constant load is:

 $N_{total} = (167.5 + 71) \cdot 9 + 18.62 \cdot .1.2 + 52.9 = 2146 + 22.34 + 52.9 = 2221 \text{ kN}$

Live load:

- From the overlap is determined by the formula from 25 [4]:

$$N_5 = \gamma_n \gamma_f \vartheta A_{\rm rp} n_{cr} \tag{25}$$

where ϑ – temporary design load

 $N_5 = 0.95 \cdot 1.1 \cdot 2 \cdot 38.7 \cdot 4 = 323 \text{KN}$

- From snow is determined by the formula from 26 [4]:

$$N_6 = \gamma_n \gamma_f p A_{cr} \tag{26}$$

where p - snow load

 $N_6 = 0.95 \cdot 1.1 \cdot 1.2 \cdot 38.7 = 45.9 = 46$ кN Longitudinal force acting on the column:

$$N = V_{Ed} = N_{total d} + N_{tl} = -2589 \text{ kN}$$

The moment acting on the column is take 3202KN.M from the Etabs calculation.

2.3.2 Selection of section and calculation of the sectional area of reinforcement

Determined by the formula:

$$\frac{c_1}{h} = \frac{c_2}{h} = \frac{4}{4o} = 0.1,$$

where c_1 and c_2 – column reinforcement cover; *h* - column length.

$$V_{Ed} = \frac{N_{Ed}}{(bhf_{cd})} \tag{27}$$

So as our value is more then Ned on etabs (Ned = 2589Kn, in program regarding to the reduction factor (0.9) for safety its 2827KN, it seems that we calculate it correctly as manually.

Concrete mark is C30/37, so fcd = 20 MPa for $\alpha_{cc1} = 1.0$ $V_{Ed} = \frac{-2827000}{(450\cdot 600\cdot 20)} = -0.5$

$$a_{Eds} = \frac{M_{Ed}}{(bh^2 f_{cd})} = \frac{3202 \cdot 10^5}{(450 \cdot 600^2 \cdot 20)} = 0.9$$

where $\omega_{tot} = 0.4$

$$A_{s,tot} = \omega_{tot} bh/\left(\frac{f_{yd}}{f_{cd}}\right)$$
(29)

$$A_{s,tot} = 0.4 \cdot 450 \cdot 600 / (\frac{434.78}{20}) = 2347 \ mm^2$$

Maximum steel area for column is 4 Celsius cross-section of column area in Etabs I find it 1 percent like $2700mm^2$, so we accept the bigger one 2700 and regarding this value we calculate amount of longitudinal bars

 $\frac{22^2 \cdot 3.14}{4} 4 = 379, \frac{2700}{379} = 7.12 = 8$ $A_s = 2700 mm^2$, accept 8\,\overline{0}22 S500 ($A_s = 2700 mm^2$). For the ties that are going to save the longitudinal bars we

For the ties that are going to save the longitudinal bars we use Hc/4 in two bases but in the middle we find the length by the Hc/2 (in moment area)

where *Hc* is height of the column

3/4 = 0.7 m3/2 = 1.5 mThe distance between ties is 15Dlb or a/2, a/4. In the middle:

45/2 = 22.5 cm

At the top and bottom of the column:

45/4 = 11.25 cm

3 Organizational and technological

3.1 Removal of top soil

During pit excavation removal of top soil to be implemented at the area (only for the pit in kind of mat foundation):

$$S_1 = (10 + l_{1s,t} + 10) \cdot (10 + l_{2s,t} + 10), (m^2)$$
(30)

where, $l_{1s,t}$ — the pit length at the top, m; $l_{2s,t}$ — the pit top, m,

$$l_{1s.t} = l_{1s.b} + 2mh$$
 (31)

$$l_{2s.t} = l_{2s.b} + 2mh$$
 (32)

where $l_{1s,b}$ – the pit length at the bottom; $l_{2s,b}$ – the pit width at the bottom.

$$l_{1s,b} = l_1 + (1,3 \cdot 2), \, m \tag{33}$$

$$l_{2s,b} = l_2 + (1,3 \cdot 2), \,\mathrm{m} \tag{34}$$

where m - Slope steepness factor (Annex No 1, table 2, Euro code 2);

h - formation level (the height of the pit) per the task, m;

1.3m- distance between the axis and slope bottom, destined for a person access to the structure;

 l_1 , l_2 -length and width of the structure in plan, respectively (per the task), m.

$$l_{1s,b} = 129 + (1,3\cdot2) = 131.6 \text{ m}$$

 $l_{2s,b} = 39 + (1,3x2) = 42.2 \text{ m}$
 $l_{1s,t} = 129 + 2 \cdot 0.5 \cdot 4 = 133$
 $l_{2s,t} = 39 + 2 \cdot 0.5 \cdot 4 = 43$

$$S_1 = (10 + 131 \cdot 6 + 10) \cdot (10 + 43 + 10) = 9550.8m^2$$

The total volume of top soil removal is calculated by the formula (only for the pit):

$$V_{s,r} = S_{1(a)} \cdot 0, 15m, m3$$
 (35)

$$V_{s,r} = 9550.8 \cdot 0.15 = 1432.62 \ m^3$$

3.2 Soil compaction

Compaction volume is measured mainly by the area of compaction that can be found, given by the average value of the compacted layer thickness (for the pit):

$$v_{com} = \frac{v_{bf}}{h_c} \,\mathrm{m}^2 \tag{36}$$

where
$$V_{bf}$$
 – backfilling volume, m^3 ;
 h_c – compacted layer thickness, (0.2 to 0.4)m
 $v_{com} = \frac{4503.93}{0.3} = 15013.12 \text{ m}^2$
 $v_{b.f} = \frac{v_{p} - v_s}{1 + K_{rl}}$
(37)

where $V_{s/f}$ volume of strip foundation, m^3 ;

V_{cellar}— volume of cellar.

$$V_{cellar} = l_1 \cdot l_2 \cdot h_{f(b)}, m^3$$

 $V_{cellar} = 129 \cdot 39 \cdot 0.3 = 1509.3, m^3$

where K_{rl} – Index of residual soil loosening;

 $h_{f(s)}$ the height of the structure basement, ref. mat strip foundation section.

$$v_{b.f} = \frac{9845.97 - 5.4 - 607.5}{1 + 1.05} = 4503.93$$

3.3 Reinforcement installation

Reinforcement consumption for the math and pile foundation:

$$G_1 = g \cdot V_{s/f}, t \tag{38}$$

where g – reinforcement frame consumption for $1m^3$ of concrete, kg/ m^3 (100–150 kg/ m^3).

 $V_{s/f}$ - volume of strip foundation, m^3 ;

$$G_1 = 130 \cdot 2.16 = 280 \tag{39}$$

$$V_{S/f} = (h_f(s) \cdot 0.3 \cdot P_{base.}) + (h_f(b) \cdot 0.8 \cdot P_{base}), m^3$$
 (40)

where $V_{s/f}$ – volume of strip foundation, m^3 ;

 $h_{f(b)}$ the height of the foundation base, ref. math foundation; $h_{f(s)}$ the height of the structure basement, ref. math foundation ; P_{base} – total foundation length per the scheme.

$$V_{S/f} = (3.2 \cdot 0.3 4 \cdot) + (0.3 \cdot 0.8 \cdot 4) = 4.8m^3$$

Reinforcement weight distribution between grid and frame conditionally

accepted as: for the grid– $0.7G_1$; for the frame – $0.3G_1$.

$$0.7 \cdot 480 = 336$$

$$0.3 \cdot 480 = 144$$

The building height is about 27.8m from the soil level, my building foundation deptid

3.4 Selection of the assembly crane

As an initial data in cranes selection serves the dimensions of pit for foundations and the basement of the structure, dimensions and weight of mounted structures.

In the cranes selection for installation of column foundations need to be used self-propelled jib cranes. When mounting the structure monolithic strip foundations with basement to be used column-tower crane.

Cranes selected by the technical parameters: load capacity, hook lifting height, working radius and the largest load moment.

Tower and jib rail cranes

When choosing the crane, it is required:

- to determine the technical capacity of crane type;
- to prepare feasibility evaluation of its use;

Initial data in this case are:

- dimensions space–planning decision of a building or structure; and
- dimensions, weight and operating position of mounted element with allowance for mounting equipment;

Mount technology work performance conditions (access roads, storages, proximity of adjacent structures and utilities, soil and climatic features, structure of the underground part, etc.) the schemes for determination of the mounting characteristics of tower cranes and jib rail cranes when mounting (a) aboveground and (b) underground structure parts.

Lifting height of crane hook H_r , m is calculated using the formula:

$$H_r, = h_1 + h_2 + h_3 + h_4 \tag{41}$$

where h_1 – the height of mounted structure from the crane base (taken equal to 0), m;

 h_2 – the height of mounted element (1.5÷2 m);

 h_3 – the height from the top level of the structure to the bottom of the cargo $(\frac{0.5}{1}m);$

$$h_4$$
 – the height of lifting equipment ($\frac{2}{4.5}$ m);
H= 0+1.75+0.75+3=5.5

In certain cases, the amount of h_4 to be selected through the catalogs of lifting

equipment in relation to the mounted elements.

Crane working radius during construction of underground part L_u , m, is calculated using the formula

$$L_u = a + c + B_p + 0.5 \tag{42}$$

where, c – slope construction, m;

$$C = L_{1s.t} - l_{2s.t} \tag{42}$$

where $l_{1s,t}$ length of a pit on top, m;

 $l_{2s,t}$ -width of a pit on top, m.

$$C = \frac{51.6 - 51.6}{2} = 0$$

where B_p – the width of structure underground part $(l_1 + (0, 5 \cdot 2))$, m; 0,5 – reserve zone width, m.

a – the distance from the crane rotation axis to the pit edge, m, is equal to.

$$a = \frac{b}{2} + 0.5 + r1$$

where b – width of the crane track $(\frac{5}{7})$, m;

0.5 - half the width of the sleeper or sleeper unit;

 r_1 – minimum allowable distance from the slope base to the sleeper structure, m, accepted per.

$$6/2 + 0.5 + 3 = 6.5$$

According to the basic characteristics of the directories or catalogs to be selected corresponding crane.

Required carrying capacity of the crane is calculated using the formula:

$$Q_{cr} = (q_1 + q_2) \cdot K, \dots$$
 (44)

where q_1 -maximum weight of the mounted element, t;

$$q_{1}=m_{b_{1}}+m_{c_{2}}$$
 (45)

where m_{b_1} -bucket weight

$$m_{c2}$$
- concrete weight (2÷2,5) t/m³.
 $q_1 = 0.380+2.25 = 2.63$

where q_2 -lifting equipment and tools weight (0,1÷0,15), t;

K- factor including the deviation of lifting device weight, taken equal $\frac{1.08}{1.12}$.

So
$$Q_{cr} = (2.63 + 0.125)1.1 = 3.3$$

Required working radius is determined by the formula:

$$L_{\rm cr}{}^{tr} = b/2 + a_1 + c \tag{46}$$

where, b– width of the crane way (track), $(5 \div 7)$, m;

 a_1 – the smallest admissible distance from the slope basis to the closest

support of the crane (portable, wheel, caterpillar), for tower cranes – to a sleeper design at not bulk soil;

c – the distance from the gravity center the farthest from the crane mounted element to the protruding part of the crane (taken equal to the width of the structure $-l_2$) m.

$$L = \frac{6}{3} + 3 + 18 + = 24$$

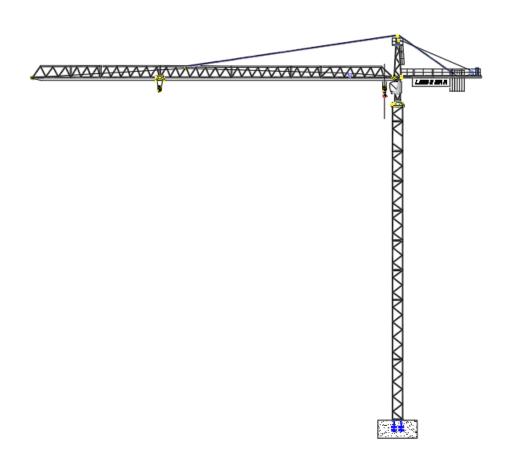


Figure 4- Tower crane

4 Economic

4.1 Estimation of building

The estimated construction cost is the amount required, the amount required to be built

Adapts to count on reliable, high-quality content. Law of the Republic of Kazakhstan.

The basis for determining the investment value for construction, the cost of construction work is a good guide to preparing contractors.

Clients and construction services contracts and accounting as a general rule, the employment contract is in accordance with the applicable law in this law. Estimating the cost of the construction project calculate the estimated construction cost feasibility study is at the product planning stage. This section investments in buildings must be identified.

The entire investment portfolio includes: planning and certification, cost of construction equipment, cost of goods, cost of installation, etc. Considered this is a way to increase the planned capital invest in building utilities. In a combined analysis the calculation of doing something is as follows:

1) For preparatory work in the construction site;

2) The main thing of construction;

3) Restrictions for the purposes of the service.

4) Energy facilities

5) Transport and communication facilities

6) The external network, sewage and water supply.

7) Landscaping and landscaping.

8) Temporary buildings and structure

9) Additional construction costs.

10) The Headquarters Department.

11) Training

12) Research and planning activities.

CONCLUSION

Constructing of college firstly based on the people of that city, those who are eager to read and learn, second the master plan of educational center which is going to made in central part of the city or people can easily get in to that, like it should be spoort by transportation or like bus lines meetro station and etc.

The architectural part of the buildings is related to the climate of that region, and the data are taken out from those sourse and making the arch of building.

The constructive area of building is importnt as its place, the invironmental affects is a main factor of constructive part. The standard already chosen by the spatial codes and regarding to this standard codesd codes dwe can design our building.

The importance of universites is that helps peope to do better financially, figure out the job and having exellent life And stay strong in their organization. This gives students multiple options and allows them to decide which career path they want to take. At the time, this university seemed expensive, but over time, people's lives have improved. Times are changing and many people are trying to ignore the important benefits of university. The fact is that a good university education enables graduates to choose more jobs, which will help prepare graduates for real life and motivate people to become better citizens. The initial cost of a kidney can be violent, but it has longterm benefits. University is the best choice for those who feel good in real life.

So this college is going to be build in the Amaty Kazakhstan in the satbayev street, the college has 9th floor with the 27.8 m height from groud level and the construction is kind of monolitic rcc concrete.

In a result constructing of educational centers has many benefits here are some example of them

1) Learning skills before job

Colege allow you to get more experirnce in what do you wan to become in future, so after finishing theis degree you will easily find out jobs.

2) Internal satisfiction

Byb the attain on college you will realize a sense of inear satification. When you finish the college you are ready to take any chalinging task in the world and its really increas your confidence level.

3) Transform the world

Knowledge gives you this oppourtunity to tranformy yourself and the world around you.

REFERENCES

1) EUROCODE 0. EN 1990 Basis of Structural Design

2) EUROCODE 1. EN 1991 Actions on Structure

3) EUROCODE 2. EN 1992 Design of Concrete structure

4) EUROCODE 7. EN 1997 Geotechnical design

5) EUROCODE 8 .EN 1998 Design of structures for earthquake resistance

6) Kazakhstan national code 2.04-03-2002 Construction heat engineering, Construction

7) Dimensions and rules of construction of the Kazakhstan national code 3.02.02- 2001. Public buildings and structures. - Astana: Construction works of the Ministry of Industry and New Technologies of the Republic o Committee on, 2001. - 84p

8) Dimensions and rules of construction of the Kazakhstan national code 3.01-01- 2008. Urban development. Urban and rural construction design. - Most. 2017-01-06. Astana: Agency for Construction and Housing of the Ministry of Industry and New Technologies of the Republic of Kazakhstan,

9) Construction dimensions and rules of the Kazakhstan national code 4.01-02-2011. Water supply. External networks and buildings. - Astana: Ministry of Industry and New Technologies of the Republic of Kazakhs Committee on Construction, 2001. -109p

10) Handbook of Construction Management by Abdul Razzak Rumane (Editor) Call Number: online ISBN: 9781482226652 Publication Date: 2016-08-05

11) Construction in seismic areas. - Most. 2018-01-07. -Astana: Ministry of Industry and New Technologies of the Republic of Kazak Agency for Construction and Housing, 2006. -80p.

12) Construction climatology. - Most. 2017-01-05. -Astana: Construction of the Ministry of Industry and New Technologies of the Re and Agency for Housing and Communal Services, 2016. -20p.

13) Simplified Engineering for Architects and Builders James Ambrose, Patrick Tripeny 2016

14) Hand book of Construction Management by Abdul Razzak Rumane (Editor) Call Number: online ISBN: 9781482226652 Publication Date: 2016-08-05

15) Construction dimensions and rules of the RK. KZ national code 4.01-02-2011. Water supply. External networks and buildings. - Astana: Ministry of Industry and New Technologies of the Republic of Kazakhs Committee on Construction, 2001. –109p

APPLICATIONS

APPENDIX .A

NO	Abbreviation	Area (m^2)	Name	quantity
1	2	(1*1.2) = 1.2m^2 Window		142
2	3	1.4*1.2 =168m^2	Window	12
3	4	2.5*1.6 =4m^2	Window	2
4	5	3.7*1.8 =6.66m^2	Window	4
5	6	5.6*18 =10.08m^2 Window		2
6	7	6.6*1.8 = 11.88 Window		2
7	3	0.8*1.9 =1.52m^2	Door	10
8	4	0.95*2=1.9m^2 Door		24
9	5	1.8*1.9 =3.42m^2	Door	8
10	3	2.5*2.2 =5.5m^2	Door	2

Figure 1 – number and area of building partition

NO	ABBREVIATIONS			
1	R.C.C	REINFORCED CEMENT CONCRETE		
2	P.C.C	PLAIN CEMENT CONCRETE		
3	N.G.L	NATURAL GROUND LEVEL		
4	P.V.C	POLY VINYLE CHLORIDE		
5	C.L	CENTER LINE		

Figure – Abbreviations

APPENDIX B

	Colledge						
	Loading on F	loof Slab					
No		Thickness	Unit	ensity of Materi	Unit	leight of Materia	
1	Gravel	0	m	1800	Kg/m^3	0	Kg/m^2
2	Torch Applied Bituminous	0.005	m	1200	Kg/m^3	6 11	Kg/m^2
3	mortar P.C.C	0.005	m	2200 1800	Kg/m^3	54	Kg/m^2
5	P.C.C R.C.C	0.03	m _	2400	Kg/m^3 Kg/m^3	480	Kg/m^2 Kg/m^2
6	Plaster	0.2	m m	2200	Kg/m ⁻³	95	Kg/m²2
7	Electrical	0.025	m m	10	Kg/m ⁻ 3	10	Kg/m ²
8	Mechanical	1	m	10	Kg/m [°] 3	10	Kg/m ²
		Load on Ro		10	Rgini o	626	Kg/m ²
	IOCAL	-oau on Ru	UBIC 101			146	Kyriir Z
	n typical floor Slab		Tenic1-	2-3-4-5-6-7-8			
	n typical noor Slab		repier				
No	:erial Name T	hickness	Unit	ty of Material	Unit	ht of Material	Unit
	trerrazzo	0.025	m	2400	Kg/m^3	60	Kg/m^2
2		0.03	m	2100	Kg/m [°] 3	63	Kg/m^2
3	R.C.C	0.2	m	2400	Kg/m [°] 3	480	Kg/m^2
4	Plaster	0.025	m	2200	Kg/m [°] 3	55	Kg/m^2
5	Electrical	1	m	10	Kg/m^3	10	Kg/m^2
6	lechanical	1	m	10	Kg/m^3	10	Kg/m^2
ad on R	oof Slab					678	Kg/m^2
						198	
	Loading or	n Stair					
No	CATEGORY	USAGE	Unit	ensity of Materi	Unit	/eight of Materia	Unit
1		dential buildi	m	2400	Kg/m^3	#VALUE!	Kg/m^2
2	В	office area	m	2100	Kg/m^3	#VALUE!	Kg/m^2
3		niversity , cof	m	2400	Kg/m^3	#VALUE!	Kg/m^2
		eople may co		2400	Kg/m^4	#VALUE!	Kg/m^2
4	Plaster	0.025	m	2200	Kg/m^3	55	Kg/m^2
						1	
	Total I	Load on Ro	oof Slab			#VALUE!	Kg/m*2
						#VALUE!	
	WALLS LO	ADING					
No	Material Name	Thickness		ensity of Materi	Unit	/eight of Materia	
1	masonery brick	0.35	2.5	2000	Kn/m^2_	1.83	KN/M^2
2	masonery brick	0.25	2.5	2000	Kn/m^2	1,3	KN/M [*] 2

Figure 1

Continuation of application B

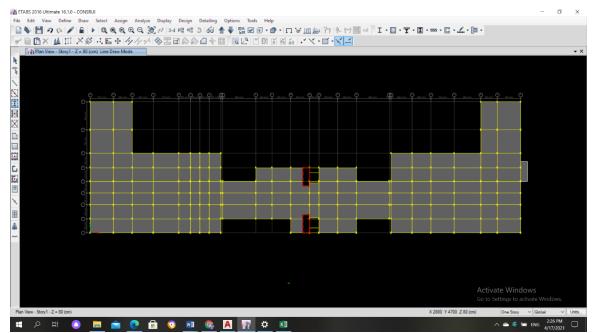


Figure 1 – structural plan of the building

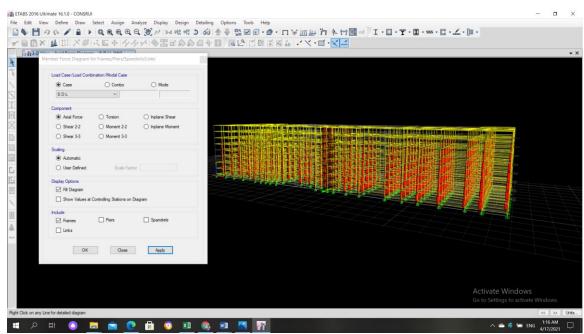


Figure 2 tension force

Continuation of appendix B

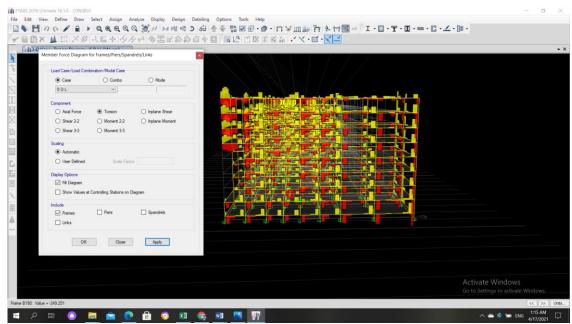


Figure 3 – Shear 2-2 (shear force acting on beam)

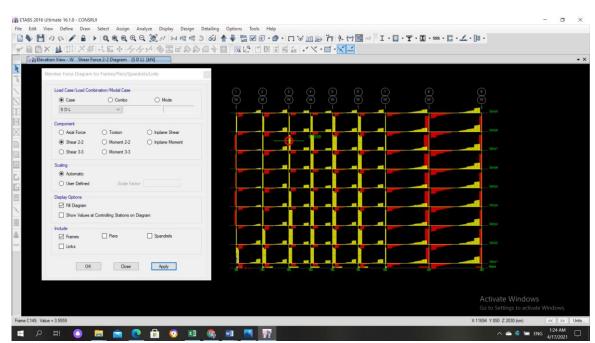


Figure 4 - shear 3-3 (shear on longitudinal bars / columns)

Continuation of appendix B

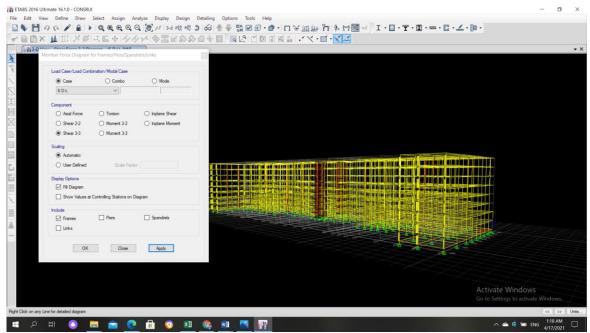


Figure 5– Moment diagram 2-2 (on column)

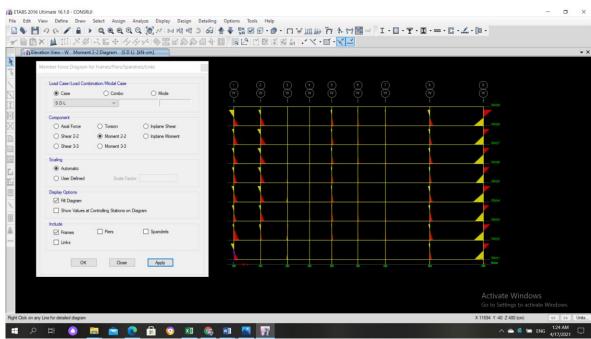


Figure 6 – Moment diagram 3-3 (on beam)

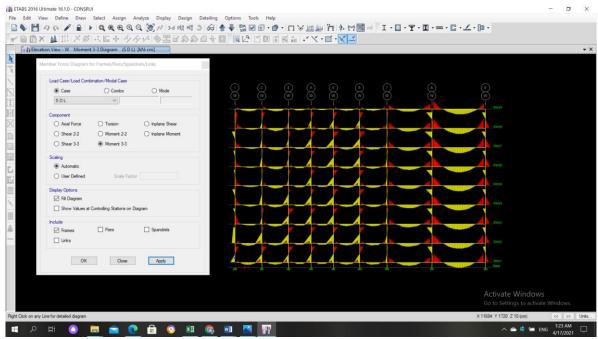


Figure 7 – Combination of loads effects on structure

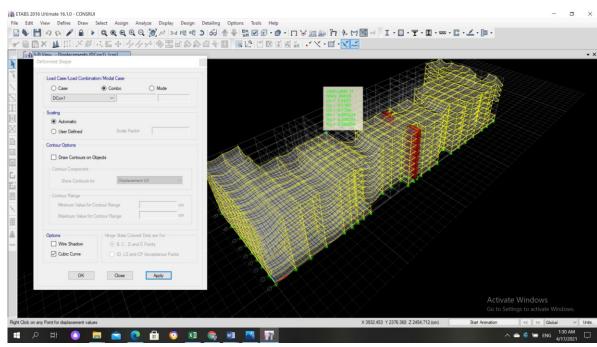


Figure 8 – Stress diagram

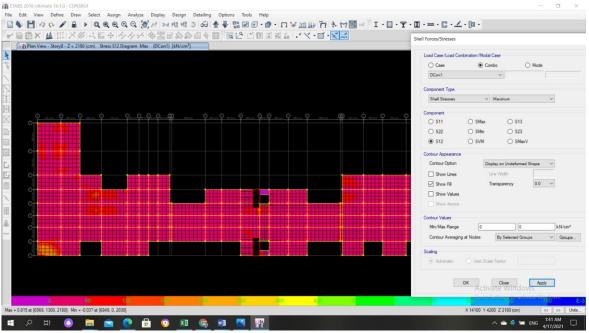


Figure 9 – Stress Max

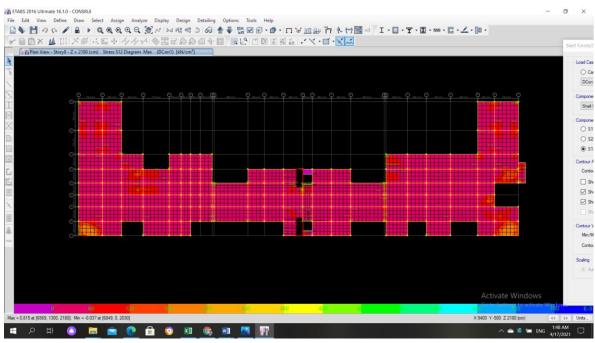


Figure 10 – Stress Min

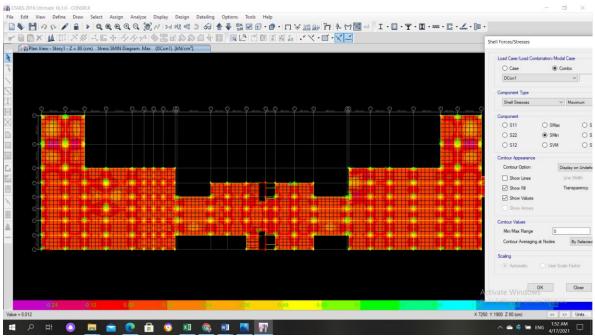



Figure 11 – Structure Design Values

	Draw Select Ass										do 15		tot l	in the	T - D		1		. /	Do .				
															- · 🖬	.1.6			-	Du .				
Elevation View - 6 Lo						1 000	94 124	1	. 135 a			1.15												
	,																							
					88	38	88		3 8			88				80								
	E 1.0			1.0 1.0 1.0																		3		
	6 10			1.0 1.0 1.0												1515				410 1.00 1		3		
				1.0 1.0 1.0					1111							1								
	1 × 10	100 100 E	C. LOUISING	1.0 1.0 1.0												Lot Lo				Lie Lie L			Joint	
	E 110			Line Line Line																				
				100 100 100																				
																						3		
	5	Contraction of the local division of the loc	i inter													1.01.0				10 15 1		3		
										a contractor								and the second second						
																	X 128	84 Y 19	950 Z 128	0 (cm)	One	e Story	~ Global	Y
vation View - 6																								

Figure 12 – steel area

Area for column 27 cm² and for beams its 5.9 cm² And regarding to codes it shouldn't be less than 5 cm² for beams

Model File: saied ASIM, Revision 0 12/1/2016

Figure 13

Structure Data

12/1/2016

1 Structure Data

This chapter provides model geometry information, including items such as story levels, point coordinates, and element connectivity.

1.1 Story Data

Name	Height	Elevation	Master Story	Similar To	Splice
Story9	300	2480	Yes	None	No
Story®	300	2180	No	Story9	No
Story7	300	1880	No	Story9	No
Story6	300	1580	No	Story9	No
Story5	300	1280	No	Story9	No
Story4	300	980	No	Story9	No
Story3	300	680	No	Story9	No
Story2	300	380	No	Story9	No
Story1	80	80	No	Story9	No
Base	0	0	No	None	No
Story9	300	2480	Yes	None	No
Story8	300	2180	No	Story9	No
Story7	300	1880	No	Story9	No
Story6	300	1580	No	Story9	No
Story5	300	1280	No	Story9	No
Story4	300	980	No	Story9	No
Story3	300	680	No	Story9	No
Story2	300	380	No	Story9	No
Story1	80	80	No	Story9	No
Base	0	0	No	None	No

Page 2 of 63

Figure 14

informa	tion as applie	ed to t	he model.	
	Table 3	21-10	ad Patterns	8
	Tubre -		7.00	
Name	Туре		Weight Multiplier	Auto Load
Dead	Dead		1	-
Live	Live		0	
SDL	Superimposed	d Dead	0	
W load	Wind		0	EUROCODE1 2005
Sex	Seismic	5	0	EUROCODE8 2004
Sey	Seismic	1	0	EUROCODE8 2004
	Table 2.2 - I	and C	anan Sum	
	_		ases - Juli	inar y
		2020		
		COLUMN OF		
		Sex	Linear Static	
	Dead Live SDL W load Sex	Name Type Dead Dead Live Live S D L Superimpose Witad Wind S ex Seismik S ey Seismik Table 2.2 - 1	Name Type Dead Dead Live Live SDL Superimposed Dead Wind S ex Seismic S ey Seismic Table 2.2 - Load C Name Dead Live S DL	Image: Network of the second

12/1/2016

Page 3 of 63

Figure 15

Analysis Results

12/1/2016

3 Analysis Results

This chapter provides analysis results.

```
3.1 Structure Results
```

Load Case/Combo	FX kN	FY kN	FZ kN	MX kN-cm	MY kN-cm	MZ kN-cm	X	Y	Z
Dead	0	0	204831.7579	286756551	-1301606797	-1.95E-05	0	0	0
Live	0	0	50176.6655	71316953.602	-321448910	0	0	0	0
SDL	0	0	67518.0104	96139520.527	-430012048	0	0	0	0
W load 1	0	0	0	0	0	0	0	0	0
W load 2	0	0	D	0	0	0	0	0	0
Sex 1	-16405.9417	0	0	-0.0001065	-28446556	23040900.318	0	0	0
Sex 2	-16405.9417	0	0	-0.0001065	-28446556	23040900.318	0	0	0
Sex 3	-16405.9417	0	0	-0.0001065	-28446556	23040900.318	0	0	0
Sey 1	0	-33514.428	0	58111266.349	0.001	-212544920	0	0	0
Sey 2	0	-33514.428	0	58111266.349	0.001	-212544920	0	0	0
Sey 3	0	-33514.428	0	58111266.349	0.001	-212544920	0	0	0
DSIbU1	0	0	367672.1871	516909697	-2337685440	-2.716E-05	0	0	0
DSIbU2	0	0	442937.1854	623885127	-2819858805	-2.858E-05	0	0	0
DSIbU3 Max	0	0	420357.6859	591792498	-2675206796	-2.816E-05	0	0	0
DSIbU3 Min	0	0	420357.6859	591792498	-2675206796	-2.816E-05	0	0	0
DSIbU4 Max	0	0	420357.6859	591792498	-2675206796	-2.816E-05	0	0	0
DSIbU4 Min	0	0	420357.6859	591792498	-2675206796	-2.816E-05	0	0	0
DSIbU5 Max	0	0	442937.1854	623885127	-2819858805	-2.858E-05	0	0	0
DSIbU5 Min	0	0	442937.1854	623885127	-2819858805	-2.858E-05	0	0	0
DSIbU6 Max	0	D	442937.1854	623885127	-2819858805	-2.858E-05	0	0	0
DSIbU6 Min	0	0	442937.1854	623885127	-2819858805	-2.858E-05	0	0	0
DSIbU7 Max	0	0	367672.1871	616909697	-2337685440	-2.716E-05	0	0	0
DSIbU7 Min	0	0	367672.1871	516909697	-2337685440	-2.716E-05	0	0	0
DSIbU8 Max	0	0	367672.1871	516909697	-2337685440	-2.716E-05	0	0	0
DSIbU8 Min	0	0	367672.1871	516909697	-2337685440	-2.716E-05	0	0	0
DSIbU9 Max	0	0	272349.7682	382896072	-1731618844	-2.012E-05	0	0	0
DSIbU9 Min	0	0	272349.7682	382896072	-1731618844	-2.012E-05	0	0	0
DSIbU10 Max	0	0	272349.7682	382896072	-1731618844	-2.012E-05	0	0	0
DSIbU10 Min	0	0	272349.7682	382896072	-1731618844	-2.012E-05	0	0	0
DSIbU11 Max	-16405.9417	0	287402.7679	404291158	-1856500073	23040900.318	0	0	0
DSIbU11 Min	-16405.9417	0	287402.7679	404291158	-1856500073	23040900.318	0	0	0
DSIbU12 Max	16405.9417	0	287402.7679	404291158	-1799606962	-23040900	0	0	0
DSIbU12 Min	16405.9417	0	287402.7679	404291158	-1799606962	-23040900	0	0	0
DSIbU13 Max	0	-33514.428	287402.7679	462402424	-1828053517	-212544920	0	0	0
DSIbU13 Min	0	-33514.428	287402.7679	462402424	-1828053517	-212544920	0	0	0
DSIbU14 Max	0	33514.428	287402.7679	346179891	-1828053517	212544920	0	0	0
DSIbU14 Min	0	33514.428	287402.7679	346179891	-1828053517	212544920	0	0	0
DSIbU15 Max	-16405.9417	0	204831.7579	286756551	-1330053353	23040900.318	0	0	0
DSIbU15 Min	-16405.9417	0	204831.7579	286756551	-1330053353	23040900.318	0	0	0
DSIbU16 Max	16405.9417	0	204831,7579	286756551	-1273160241	-23040900	0	0	0
DSIbU16 Min	16405.9417	0	204831.7579	286756551	-1273160241	-23040900	0	0	0

Page 4 of 63

Figure 16

Analysis Results

12/1/2016

Table	3.4 -	Story	Stiffness	(continued)	Ľ

Story	Load Case	Shear X kN	Drift X cm	Stiffness X kN/cm	Shear Y kN	Drift Y cm	Stiffness Y kN/cm
Story9	Sey 3	0	0.081	0	6916.4553	0.4992	13855.5059
Story8	Sey 3	0	0.0868	0	13230.3063	0.3982	33223.2132
Story7	Sey 3	0	0.0913	0	18755.4747	0.6825	27482.5482
Story6	Sey3	0	0.1319	0	23398.9674	0.7725	30289.7852
Story5	Sey 3	0	0.1534	0	27132.0462	0.7526	36052.5155
Story4	Sey 3	0	0.1662	0	30025.3887	0.7392	40618.6349
Story3	Sey 3	0	0.1552	0	32059.948	0.6395	50129.2864
Story2	Sey3	0	0.1068	0	33273.8946	0.4681	71089.5815
Story1	Sey 3	0	0.0072	0	33514.428	0.0309	1082956.731

3.3 Modal Results

Table 3.5 - Modal Periods and Frequencies

Case	Mode	Period sec	Frequency cyc/sec	Circular Frequency rad/sec	Eigenvalue rad²/sec²
Modal	1	1.051	0.951	5.9767	35.7211
Modal	2	0.934	1.071	6.7268	45.2496
Modal	3	0.823	1.215	7.6342	58.2815
Modal	4	0.458	2.181	13.7048	187.8214
Modal	5	0.356	2.809	17.6475	311.4342
Modal	6	0.339	2.948	18.5258	343.207
Modal	7	0.296	3.379	21.2294	450.6881
Modal	8	0.238	4.203	26.4055	697.2495
Modal	9	0.21	4.769	29.9676	898.056
Modal	10	0.206	4.847	30.4527	927.3687
Modal	11	0.192	5.211	32.7438	1072.1565
Modal	12	0.187	5.336	33.529	1124.1932

Table 3.6 - Modal Participating Mass Ratios (Part 1 of 2)

Case	Mode	Period sec	UX	UY	UZ	Sum UX	Sum UY	Sum UZ
Modal	1	1.051	0.046	0.0005	Ó	0.046	0.0005	Ó
Modal	2	0.934	0.6473	0.0004	0	0.6933	0.0008	0
Modal	3	0.823	0.0007	0.6131	0	0.694	0.614	0
Modal	4	0.458	0.0001	0.0706	0	0.6941	0.6846	0
Modal	5	0.356	0.0052	0.0027	0	0.6993	0.6873	0
Modal	6	0.339	1.427E-05	0.0613	0	0.6993	0.7486	0
Modal	7	0.296	0.1118	0.0001	0	0.8111	0.7487	0
Modal	8	0.238	0.0002	0.0015	0	0.8113	0.7503	0
Modal	9	0.21	0.0013	0.0069	0	0.8125	0.7572	0
Modal	10	0.206	0.0004	0.0108	0	0.8129	0.768	0
Modal	11	0.192	2.933E-06	0.0575	0	0.8129	0.8255	0
Modal	12	0.187	0.0005	0.0004	0	0.8133	0.8259	0

Page 62 of 63

Figure 17

Analysis Results

12/1/2016

Table 3.6 - Modal Participating Mass Ratios (Part 2 of 2)

Case	Mode	RX	RY	RZ	Sum RX	Sum RY	Sum RZ
Modal	1	0.0003	0.0193	0.6556	0.0003	0.0193	0.6556
Modal	2	0.0001	0.2884	0.0451	0.0004	0.3077	0.7007
Modal	3	0.2765	0.0003	0.0008	0.2769	0.3081	0.7015
Modal	4	0.0389	1.227E-05	0.0003	0.3158	0.3081	0.7019
Modal	5	0.0078	0.015	0.0945	0.3236	0.323	0.7963
Modal	6	0.1728	0.0001	0.0052	0.4964	0.3231	0.8015
Modal	7	0.0001	0.2796	0.0055	0.4965	0.6028	0.807
Modal	8	0.0018	2.767E-05	0.0001	0.4983	0.6028	0.8071
Modal	9	0.0082	0.0017	0.0254	0.5065	0.6045	0.8326
Modal	10	0.0121	0.0005	0.0105	0.5186	0.6051	0.8431
Modal	.11	0.0984	2.664E-05	7.535E-06	0.617	0.6051	0.8431
Modal	12	0.001	0.0012	0.0012	0.6181	0.6063	0.8443

Table 3.7 - Modal Load Participation Ratios

Case	Item Type	Item	Static %	Dynamic %
Modal	Acceleration	UX	99.73	81.33
Modal	Acceleration	UY	99.79	82.59
Modal	Acceleration	UZ	0	0

Table 3.8 - Modal Direction Factors

Case	Mode	Period sec	UX	UY	UZ	RZ
Modal	1	1.051	0.061	0.001	0	0.938
Modal	2	0.934	0.94	0.001	0	0.059
Modal	3	0.823	0.001	0.998	0	0.001
Modal	4	0.458	0.001	0.787	0	0.211
Modal	5	0.356	0.034	0.018	0	0.947
Modal	6	0.339	0	0.887	0	0.113
Modal	7	0.296	0.995	0.001	0	0.004
Modal	8	0.238	0	0.001	0	0.999
Modal	9	0.21	0.023	0.096	0	0.881
Modal	10	0.206	0.011	0.336	0	0.653
Modal	11	0.192	0.001	0.71	0	0.289
Modal	12	0.187	0.002	0	0	0.997

Page 63 of 63

Figure 18

APPENDIX C

CALCULATION OF LABOR COSTS

Обосн. ЕНиР	Name of works	Unit rev.	Volume works	Time rate man-hour	00363	Pricing Tenge	costs for the entire volume
§4-1-33 1a	Reinforcement mesh laying in a horizontal position	one set- ka	539	0,45	30,32	0-23,7	127-74
§4-1-33 2a	Reinforcement mesh laying upright	one set- ka	75	0,84	7,87	0-44,2	33-15
§4-1-34 10	Knitting of reinforcement with a diameter of up to 10 mm	т	61	18	137,25	10-06	613-66

Figure 1- Labor cost

Local estimate calculation

on the

Base:

Event	esential	114855.892	thousand tenge
standard lab	or intesity	91122.92	person-h
Estmated		27002.940	thousand tenge
wage			

Compiled in 2001

				Unit cos	t, tenge	Total cos	t, tenge	Overheads	Labor costs,	man-hours,
	Code and item			Total	Expl. machines	Total	Expl. machines	Overneads	constructio	on workers
N p / p	number of the standard	Name of works and costs, unit of measure	Number	Salary of construction	incl. Salary of	Salary of	incl. Salary of	tenge	workers serv	ing machines
				workers	drivers	construction workers	drivers	%	for one.	Total
one	2	3	four	five	6	7	eight	nine	10	eleven
			<u> </u>	Section 1 Ea	<u>rthwork</u>					
one	E11-01-03-072-02	Layout of areas with bulldozers up to 132 (up to 180) kW (hp)	4,936.75	7.38	7.38	36,433.22	36,433.22	2,623.19	-	
		m2		-	0.74	-	3,643.32	72.00	0.41	2,024.0
2		Development of soil of the 6th group into the dump with single-bucket dragline excavators, with a bucket with a capacity of 10 m3, electric walking when working on hydropower construction	4,291.17							
				205.32	204.18	881,063.02	876,171.09	22,121.84	1.36	5,835.9
		m3		3.64	3.52	15,619.86	15,104.92	72.00	0.94	4,033.7
3	E11-010104-0603	Backfilling of trenches and pits with bulldozers with a power of 303 kW (410 hp), when moving soil of the 2nd group up to 5 m	455.70	56.43	56.43	25,715.15	25,715.15	1,371.47		
		m3		-	4.18	-	1,904.83	72.00	0.66	300.7
	I	TOTAL SECTION 1 DIRECT COSTS	Tenge			943,211.39	938,319.46			5,835.9
			Tenge			15,619.86	20,653.07			6,358.5
	The cost of general	construction works -	Tenge			943,211.39				
	Materials -		Tenge							

https://translate.googleusercontent.com/translate_f

6/2

2021			https:	//translate.google	usercontent.com	n/translate_f				
	Total salary -		Tenge			36,272.92				
	The cost of materia		Tenge							
		Overhead -	Tenge					26,116.51		
		Normative labor intensity in N.R	person-h							609.'
		Estimated wages in N.R	Tenge			3,917.48				
		Irregular and unforeseen costs -	Tenge			58,159.67				
	TOTAL, The cost	of civil works -	Tenge			1,027,487.57				
		Standard labor intensity -	person-h							12,194.5
		Estimated salary -	Tenge			40,190.40				
		TOTAL SECTION 1	Tenge			1,027,487.57				
		Standard labor intensity -	person-h							12,194.5
		Estimated salary -	Tenge			40,190.40				
		1		I	I					
			Sec	ction 2 Foun	<u>dation</u>					
four	E11-060101-0101	Concrete preparation device, concrete class B7.5	91.14	7,006.11	1,346.00	638,536.87	122,674.44	57,870.40	1.43	130.3
		m3		685.20	12.56	62,449.13	1,144.72	91.00	0.19	17.
five	E11-060101-0113	Concrete strip foundations, class B15 concrete	5,559.54	4,480.31	3,408.30	24,908,462.66	18,948,580.18	1,254,525.21	4.17	23,183.2
		m3		220.66	27.31	1,226,768.10	151,831.04	91.00	0.17	945.1
6	E11-080101-0307	Side coating bituminous waterproofing in 2 layers on the leveled surface of								
		rubble masonry brick, concrete walls, foundations	24,060.900	365.30	27.01	8,789,446.77	649,884.91	482,216.53	0.19	4,571.5
		m2		21.20	0.35	510,091.08	8,421.32	93.00	0.00	26.2
7	S121-050301- 3202	Reinforcement blanks not assembled into frames and meshes: steel of periodic profile of class A-III, d 14 mm	0.000	-	-	-	-	-	-	
eight	S121-050301- 3001	Reinforcement blanks not assembled into frames and meshes: smooth steel of class A-I, d 6 mm	0.000	65,745.09		-	-	-	-	
	1	TOTAL SECTION 2 DIRECT COSTS	Tenge			34,336,446.29	19,721,139.53			27,885.1
			Tenge			1,799,308.30	161,397.07			988.7
	The cost of general	l construction works -	Tenge			34,336,446.29				
	Materials -		Tenge							
	Total salary -		Tenge			1,960,705.38				
		Overhead -	Tenge			,		1,794,612.14		
		Normative labor intensity in N.R	person-h					-,		1,443.7
		Estimated wages in N.R	Tenge			269,191.82				1,113.1
		Irregular and unforeseen costs -	Tenge			2,167,863.51				
		inegular and uniorescen costs -	Tenge			2,107,005.51				

38,298,921.94

2,229,897.20

Tenge

person-h

Tenge

Standard labor intensity -

Estimated salary -

TOTAL, The cost of civil works -

28,873.91

6/2/2021

https://translate.googleusercontent.com/translate_f

TOTAL SECTION 2	Tenge	38,298,921.94	
Standard labor intensity -	person-h		28,873.91
Estimated salary -	Tenge	2,229,897.20	

			<u> </u>	Section 3 colu	<u>imn</u>					
nine	E11-060501-0201	column average in building	113.925	23,012.14	13,416.07	2,621,658.13	1,528,425.77	924,275.12	13.55	1,543.0
		m3		7,436.23	1,479.17	847,172.50	168,514.44	91.00	5.07	577.
10	S121-050301- 3203	reinfoecment class not assembled to the building class A-III, d 32-40 mm t	-	-		-		-	-	
eleven	S121-050301- 3202	Reinforcement blanks not assembled into frames and meshes: steel of periodic profile of class A-III, d 20-22 mm t	3.7975	67,412.88		256,000.42				
12	\$121-050301- 3001	Reinforcing blanks, not assembled into frames and meshes: smooth steel of class A-I, d 10mm	1.899	65,745.09	-	124,830.20	-	-		
		Total direct cost by section 3	te			3,002,488.76	1,528,425.77			1,543.6
		Total uncer cost by section 5	Tenge			847,172.50	168,514.44			577.0
	The cost of general	construction works -	Tenge			2,621,658.13				
	Materials -		Tenge			380,830.63				
	Total salary -		Tenge			1,015,686.95				
		Overhead -	Tenge					924,275.12		
		Normative labor intensity in N.R	person-h					,		106.
		Estimated wages in N.R	Tenge			138,641.27				
		Irregular and unforeseen costs -	Tenge			235,605.83				
	TOTAL, The cost of	of civil works -	Tenge			4,162,369.71				
		Standard labor intensity -	person-h							2,121.
		Estimated salary -	Tenge			1,154,328.21				
	1	TOTAL SECTION 3	Tenge			4,162,369.71				
		Standard labor intensity -	person-h							2,121.
		Estimated salary -	Tenge			1,154,328.21				
				Santian A w	all					
13	F11 080201 0102	Laying of simple exterior brick walls with a floor		Section 4 wa	<u>a11</u>					
15	111-000201-0103	height of up to 4 m	3,690.48	4,875.72	812.62	17,993,747.15	2,998,957.86	6,956,724.41	4.90	18,083.
		m3		1,820.44	206.49	6,718,286.80	762,062.02	93.00	0.41	1,513.
ourteen	E11-080201-0107	Laying of internal brick walls with a floor height of up to 4 m	922.79	3,745.55	259.44	3,456,364.40	239,409.16	1,503,735.51	4.25	3,921.
		m3		1,556.64	195.56	1,436,454.94	180,464.96	93.00	0.39	359.8
fifteen	E11-080401-0301	Laying of partitions reinforced with a thickness of 120 mm at a floor height of up to 4 m	15,297.00	1,248.11	181.80	19,092,338.67	2,780,994.60	9,506,238.05	1.39	21,262.8

https://translate.googleusercontent.com/translate_f

2021			mu	ps.//translate.google	usercontent.con	II/IIalisiale_I				
		m2		637.92	30.30	9,758,262.24	463,499.10	93.00	0.03	458.9
		TOTAL SECTION 4 DIRECT COSTS	Tenge			40,542,450.22	6,019,361.61			43,268.0
			Tenge			17,913,003.98	1,406,026.08			2,331.9
	The cost of genera	al construction works -	Tenge			40,542,450.22				
	Materials -		Tenge							
	Total salary -		Tenge			19,319,030.07				
		Overhead -	Tenge					17,966,697.96		
		Normative labor intensity in N.R	person-h							2,280.
		Estimated wages in N.R	Tenge			2,695,004.69				
		Irregular and unforeseen costs -	Tenge			3,510,548.89				
	TOTAL, The cost	of civil works -	Tenge			62,019,697.07				
		Standard labor intensity -	person-h							45,599.
		Estimated salary -	Tenge			22,014,034.76				
	1	TOTAL SECTION 4	Tenge			62,019,697.07				
		Standard labor intensity -	person-h							45,599.
		Estimated salary -	Tenge			22,014,034.76				
	1					I				
				Section 5. ove	arlan					
airtaan	E11 060901 0105	Installation of non-gindon clobs up to 200 mm thick at		<u>Section 3. 0v</u>	<u></u>					
sixteen	E11-000801-0103	5 Installation of non-girder slabs up to 200 mm thick at a height of								
		more than 6 m from the support area, concrete class B35	189.88	23,999.10	1,534.00	4,556,829.11	291,268.25	1,155,803.51	11.05	2,098
		m3		6,568.91	120.30	1,247,271.79	22,841.96	91.00	0.36	68.
17	S121-050301-	Reinforcement blanks not assembled into frames and				1,247,271.79	22,041.90			00.
	3202	meshes: steel of periodic profile of class A-III, d 16 mm								
		class A-m, u to mm	37.98	67,412.88	-	2,560,004.24	-	-	-	
		t		-	-	-	-	-	-	
eighteen		Reinforcement blanks not assembled into frames and								
	3001	meshes: smooth steel of class A-I, d 6 mm								
				<						
		f	2.42	65,745.09	-	158,878.93	-		-	
		TOTAL SECTION 5 DIDECT COSTS	Tanga			7 275 712 29	291,268.25			2 009
		TOTAL SECTION 5 DIRECT COSTS	Tenge Tenge			7,275,712.28	291,268.25			2,098.
	T1 ()	1					22,041.90			00.
		al construction works -	Tenge Tenge			4,556,829.11				
			lenge			2,718,883.17				
	Materials -		-							
	Materials - Total salary -		Tenge			1,270,113.75				
		Overhead -	Tenge Tenge			1,270,113.75		1,155,803.51		
		Normative labor intensity in N.R	Tenge Tenge person-h					1,155,803.51		108
		Normative labor intensity in N.R Estimated wages in N.R	Tenge Tenge person-h Tenge			173,370.53		1,155,803.51		108.
		Normative labor intensity in N.R	Tenge Tenge person-h					1,155,803.51		108.
		Normative labor intensity in N.R Estimated wages in N.R Irregular and unforeseen costs -	Tenge Tenge person-h Tenge			173,370.53		1,155,803.51		108.

6/

ineteen		Estimated salary -				1,443,484.28				
ineteen	1	TOTAL SECTION 5	Tenge Tenge			8,937,406.74				
ineteen		Standard labor intensity -	person-h							2,166.47
ineteen		Estimated salary -	Tenge			1,443,484.28				
ineteen				Section 6. Ro	of					
meteen	E11 120101 0701	Roofing made of corrugated asbestos-cement sheets,	<u>!</u>	Section 0. Ro	<u>01</u>					
	E11-120101-0/01	ordinary profile on a wooden lathing with its device	331.42	749.54	47.91	248,411.05	15,878.24	79,812.15	0.42	139.2
		m2		252.80	8.96	83,782.47	2,969.86	92.00	0.02	6.63
twenty	E11-120101-0102	Installation of pitched roofs from three layers of roofing roll materials on bitumen mastic with a protective layer of gravel on bitumen mastic	87.34	464.44	41.39	40,565.35	3,615.04	18,012.44	0.23	20.09
		m2		216.93	7.23	18,947.21	631.53	92.00	0.01	0.87
	1	TOTAL SECTION 6 DIRECT COSTS	Tenge			288,976.40	19,493.27			159.28
			Tenge			102,729.68	3,601.40			7.5
	The cost of general	l construction works -	Tenge			288,976.40				
	Materials -		Tenge							
	Total salary -		Tenge			106,331.07				
		Overhead -	Tenge					97,824.59		
		Normative labor intensity in N.R	person-h							8.3
		Estimated wages in N.R	Tenge			14,673.69				
		Irregular and unforeseen costs -	Tenge			23,208.06				
	TOTAL, The cost	of civil works -	Tenge			410,009.05				
		Standard labor intensity -	person-h							166.7
		Estimated salary -	Tenge			121,004.76				
		TOTAL SECTION 6	Tenge			410,009.05				
		Standard labor intensity -	person-h							166.7
		Estimated salary -	Tenge			121,004.76				
		TOTAL DIRECT COSTS BY ESTIMATE:	Tenge			86,389,285.34	28,518,007.90			80,790.3
			Tenge			21,925,106.11	1,783,034.02			10,332.6
	The cost of general	l construction works -	Tenge			83,289,571.55				
	Materials -		Tenge			3,099,713.79				
	Total salary -		Tenge			23,708,140.13				
		Overhead -	Tenge					21,965,329.83		
		Normative labor intensity in N.R	person-h							4,556.1
		Estimated wages in N.R	Tenge			3,294,799.47				

Tenge

Tenge

person-h

Tenge

6,501,276.91

114,855,892.07

27,002,939.61

TOTAL, The cost of civil works -

Irregular and unforeseen costs -

Standard labor intensity -

Estimated salary -

91,122.92

https://translate.googleusercontent.com/translate_f

TOTAL BY AN ESTIMATE:	Tenge	114,855,892.07	
Standard labor intensity -	person-h		91,122.9
Estimated salary -	Tenge	27,002,939.61	
Recalculation of totals into prices as of 04/26/2020			
Total direct costs		86,389,285.34	
Overheads		21,965,329.83	
Irregular and unforeseen costs		6,501,276.91	
TOTAL in prices as of 01.01.2001		114,855,892.07	
Total with seniority costs		116,004,451.00	
Total with the cost of additional. leave		116,463,874.56	
Total in current prices as of 03.24.		398,306,451.01	
Total with taxes, fees and obligations. payments		406,272,580.03	
Value Added Tax (VAT)	12%	48,752,709.60	
Total with value added tax (VAT)		455,025,289.63	

Made up

_Poya asim

Estimated calculation of the cost of construction in the amount of 19s 7k

including refundable amounts: 15s7k

value added tax 18s7k

471.95 thousand tenge0.66 thousand tenge50.57 thousand tenge

ESTIMATE CALCULATION OF THE COST OF CONSTRUCTION

Compiled in 2001

			Est	imated cost, thousand to	enge	
P / p No.	No. of estimates and calculations	Name of chapters, objects, works and costs	construction and installation works	equipment, furniture and inventory	other costs	Total, thousand tenge
one	2	3	four	five	6	7
			-			
one	one	Civil works	116.45	-	-	116.45
2		Total = 1 line	116.45	-	-	116.45
3		Temporary buildings and structures 1.1% * 2 line 7 column	1.28	-	-	1.28
four		Return of materials from temporary buildings and structures 15% * 3s7k	0.19	-	-	0.19
five		Total = 3 lines	1.28	-	-	1.28
6		Total 2s + 5s	117.73	-	-	117.73
7		Additional costs during the performance of work in the winter 1.2% * 6s7k	1.41	-	-	1.41
eight		Seniority costs 1% * 6s7k			1.18	1.18
nine		Costs for additional vacations 0.4% * 6s7k			0.47	0.47
10		Total 7s + 8s + 9s	1.41	Ì	1.65	3.06
eleven		Total 6s + 10s	119.15		1.65	120.80
12		Including refundable amounts = 4s	0.19		-	0.19
13		Total by estimate in base prices 2001 = 11s	119.15	Ì	1.65	120.80
fourteen		Total estimated at current prices in 2020. 13s * 3.42	407.48		5.64	413.12
fifteen		Including refundable amounts in current prices 12s7k * 3.42	0.66			0.66
sixteen		Taxes, fees, mandatory payments, 2% * 14s7k			8.26	8.26
17		Estimated cost at the current price level 14s + 16s	407.48	î î	13.90	421.38
eighteen		VAT (12%) * 17s7k	Î	ĵ ĵ	50.57	50.57
nineteen		Construction cost 17s + 18s	407.48	1 İ	64.47	471.95

RESOURCE ESTIMATE

Continuation of Appendix C


Object estimate

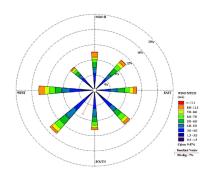
Estimated cost	116.453	thousand tenge
Standard labor intensity	91.123	thousand people
Estimated salary	27.003	hour thousand tenge

Compiled in 2001

			Estimated cost, thousand tenge						
P / p No.	No. of estimates and calculations	Name of works and costs	construction and installation works	equipment, furniture and inventory	other costs	Total	Normative labor intensity, thousand people hour	Estimated salary, thousand tenge	Indicators of a unit cost, thousand tenge
one	2	3	four	five	6	7	eight	nine	10
	one	Civil works	116.453			116.453	91.123	27.003	
		Total	116.453			116.453	91.123	27.003	

PRODUCED BY AN AUTODESK STUDENT VERSION

Explanation


- 1.Main building area = 5095.5m²
- 2.Land area=25907m^2
- 3.Landscaping area =8255
- 4.Terrazo area =14252^2
- 5.Basketball zone=600m²
- 6.Parking area=2800m²

		KazNITU-5B072900-Civil Engineering-02.08.02-2021-DP						
		College Educational Center in Almaty						
Chan. Num.par.List No.doc Sign	Date							
Head of dp Kozyukova N.V			stage	Sheet	Sheet			
Superviser Zhambakina.Z		Architectural and analytical part	DP	1	10			
Consultant Zhambakina.Z					10			
Controller Kozyukova N.V			Civil Ena	ineerina	and building			
Prepared by Poya Asim	_	General Plan	materials department					
PRODUCED BY A		-		форма	m A3			

ΝΟΙΖΑΞΑΥ ΤΝΞΟΤΤΟ ΝΑ DIICEDE

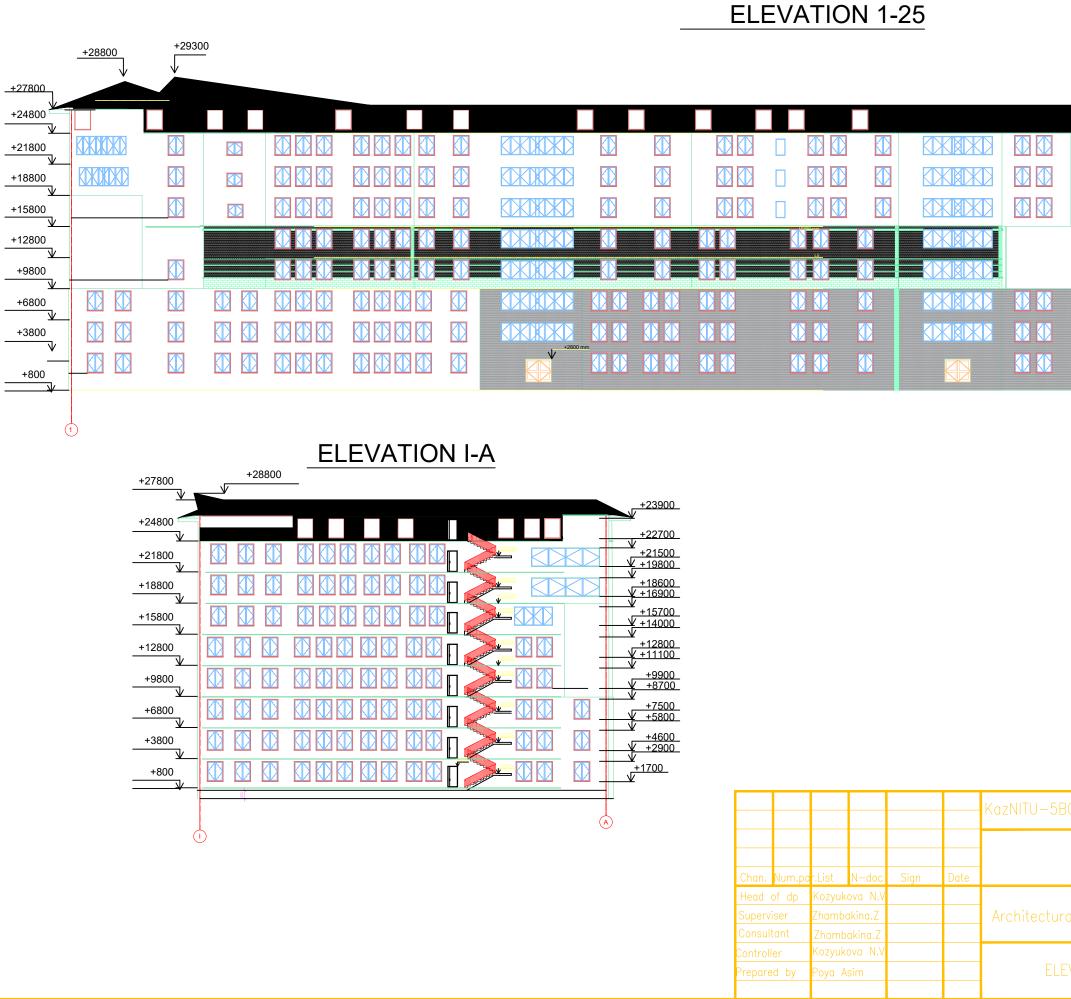
GENERAL PLAN OF THE BUILDING

Wind Direction, Zone Almaty

Abbreviation

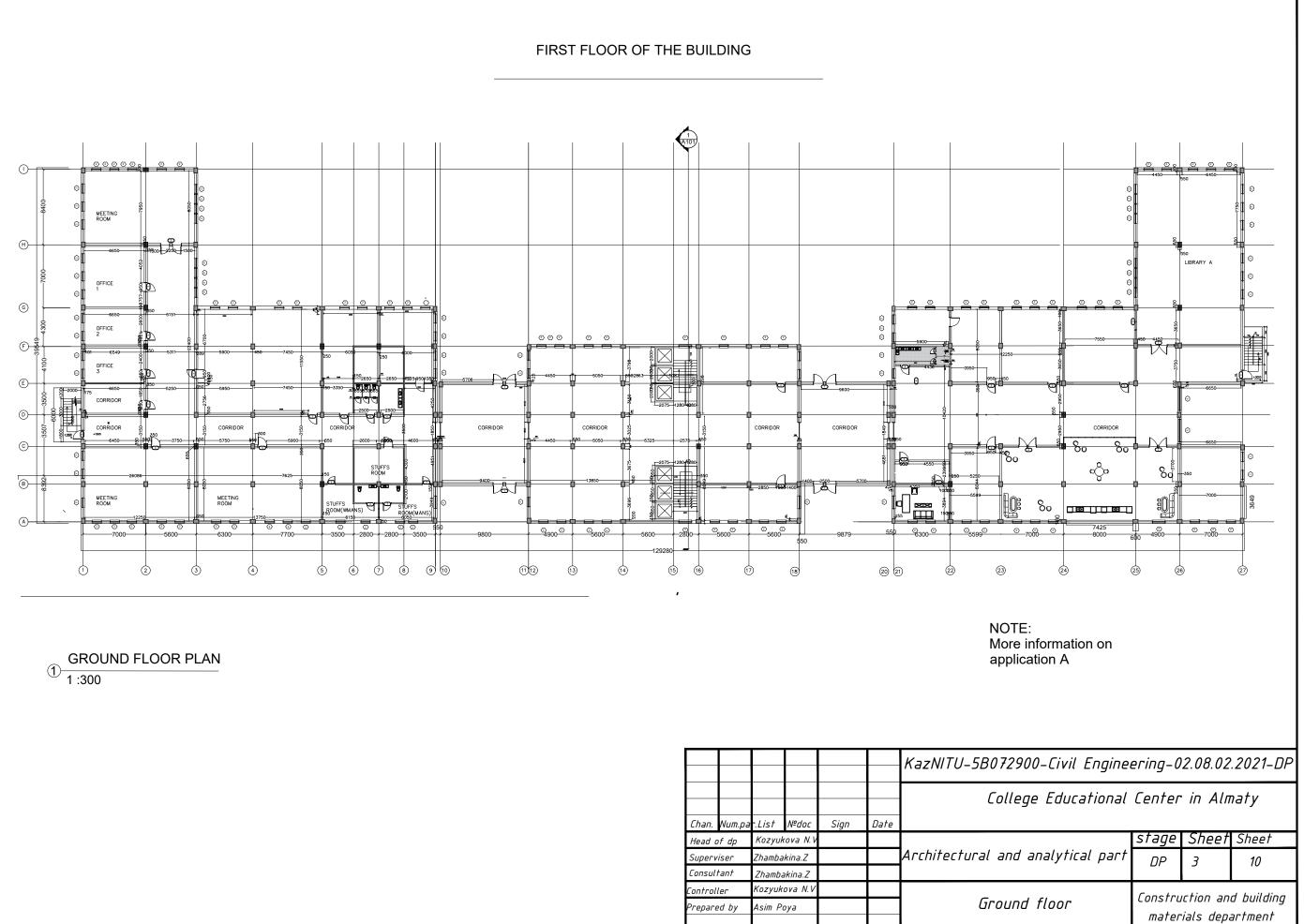
Tries

pavement


Terrazo

Foutain

Box

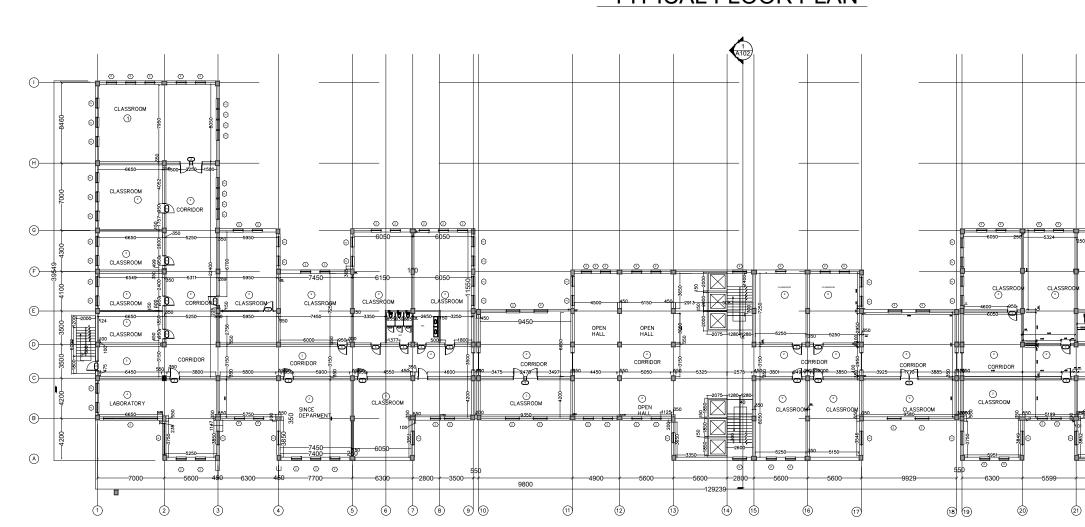

1		

3072900-Civil Eng	gineering–02.	08.02.2021-DP
-------------------	---------------	---------------

College	Educational	Center in	Almaty
---------	-------------	-----------	--------

	stage	Sheet	Sheet		
ral and analytical part	DP	2	10		
EVATIONS	Construction and building materials department				
		тридоф	m A.3		

25



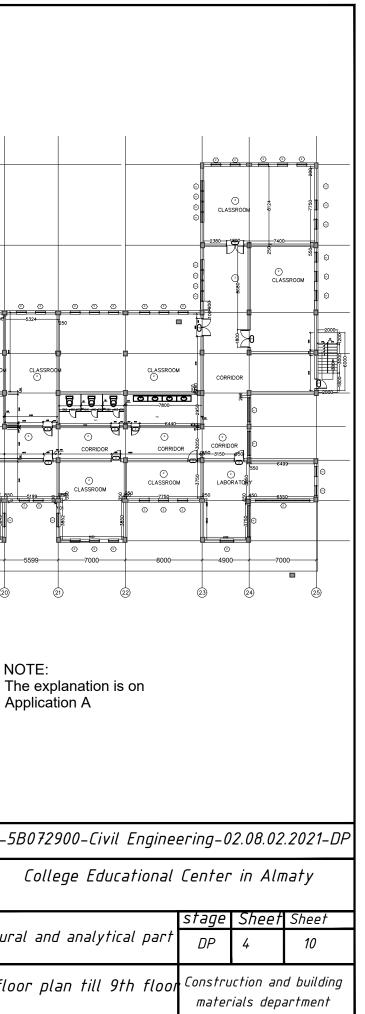
					-	
						KazNITU-5B072900
						College
Chan.	Num.pa	r.List	№doc	Sign	Date	
Head o	dofdp Kozyukova N.V		cova N.V			
Superv	viser	Zhamba	kina.Z			Architectural and an
Consul	tant	Zhamba	akina.Z			
Control	ler	Kozyuk	ova N.V			
Prepared by		Asim Poya				Ground f

PRODUCED BY AN AUTODESK STUDENT VERSION

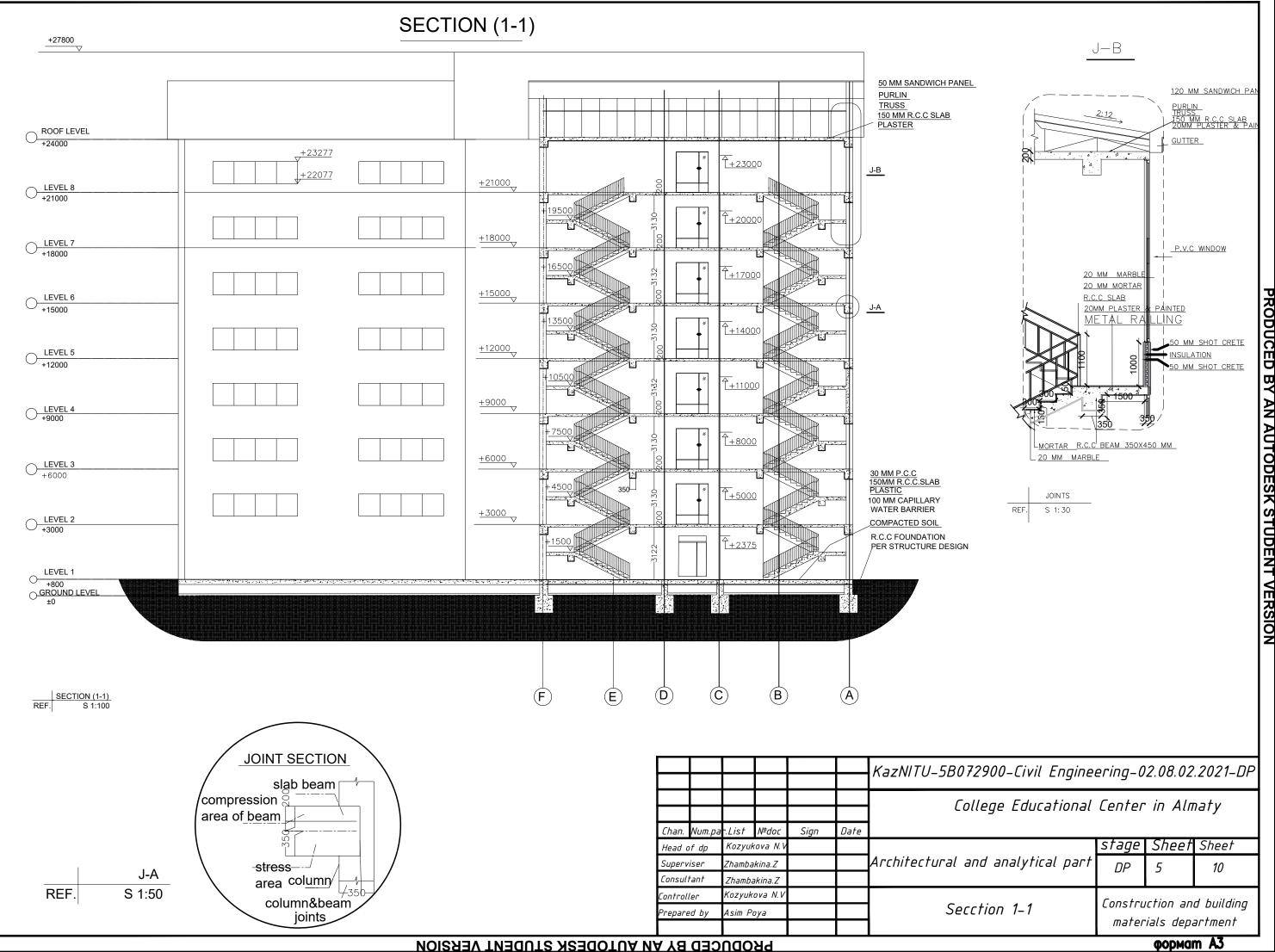
ΡΑΟDUCED ΒΥ ΑΝ Αυτοdesk student version

формат АЗ

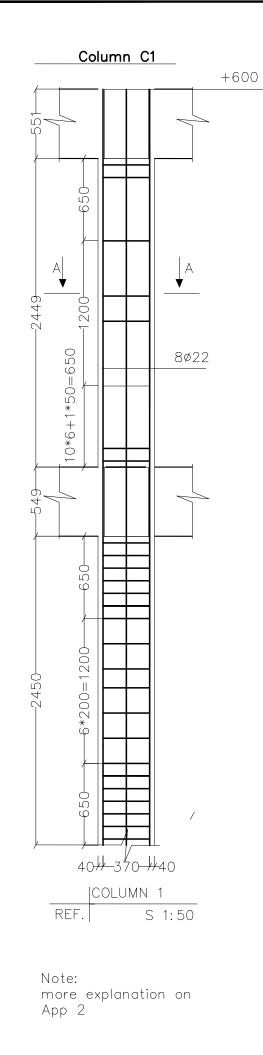
TYPICAL FLOOR PLAN 1 :300

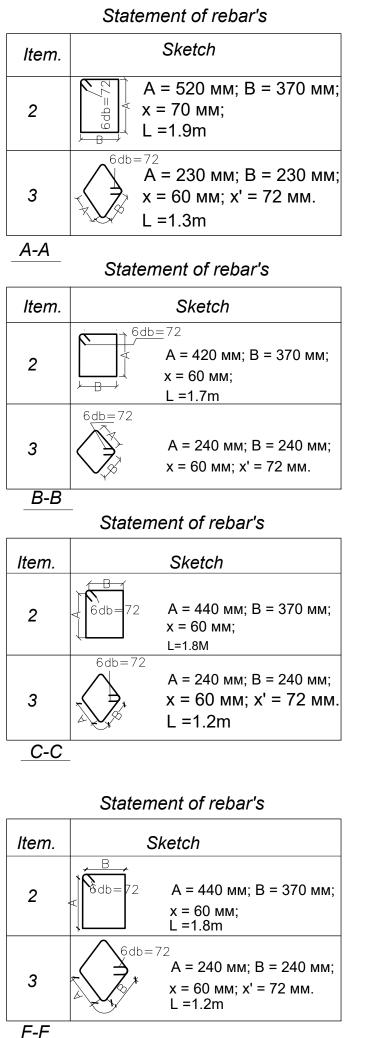

NOTE: Application A

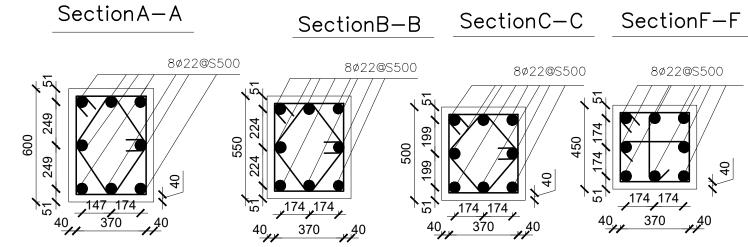
Chan. Num.par.List №doc Sign Date							KazNITU-5B072900
							College
Head of dp Kozyukova N.V	Chan.	Num.pa	r.List	№doc	Sign	Date	
	Head	Head of dp Kozyukova N		cova N.V			
Superviser Zhambakina.Z Architectural and a	Super	viser	Zhambakina.Z Zhambakina.Z				Architectural and ar
Consultant Zhambakina.Z	Consu	ltant					
Controller Kozyukova N.V	Contro	Controller H		ova N.V			T I I GI I
Prepared by Asim Poya Typical floor plan	Prepared by		Asim Poya				lypical floor plan

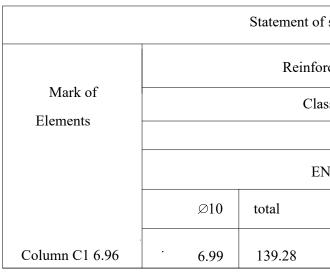

PRODUCED BY AN AUTODESK STUDENT VERSION

TYPICAL FLOOR PLAN

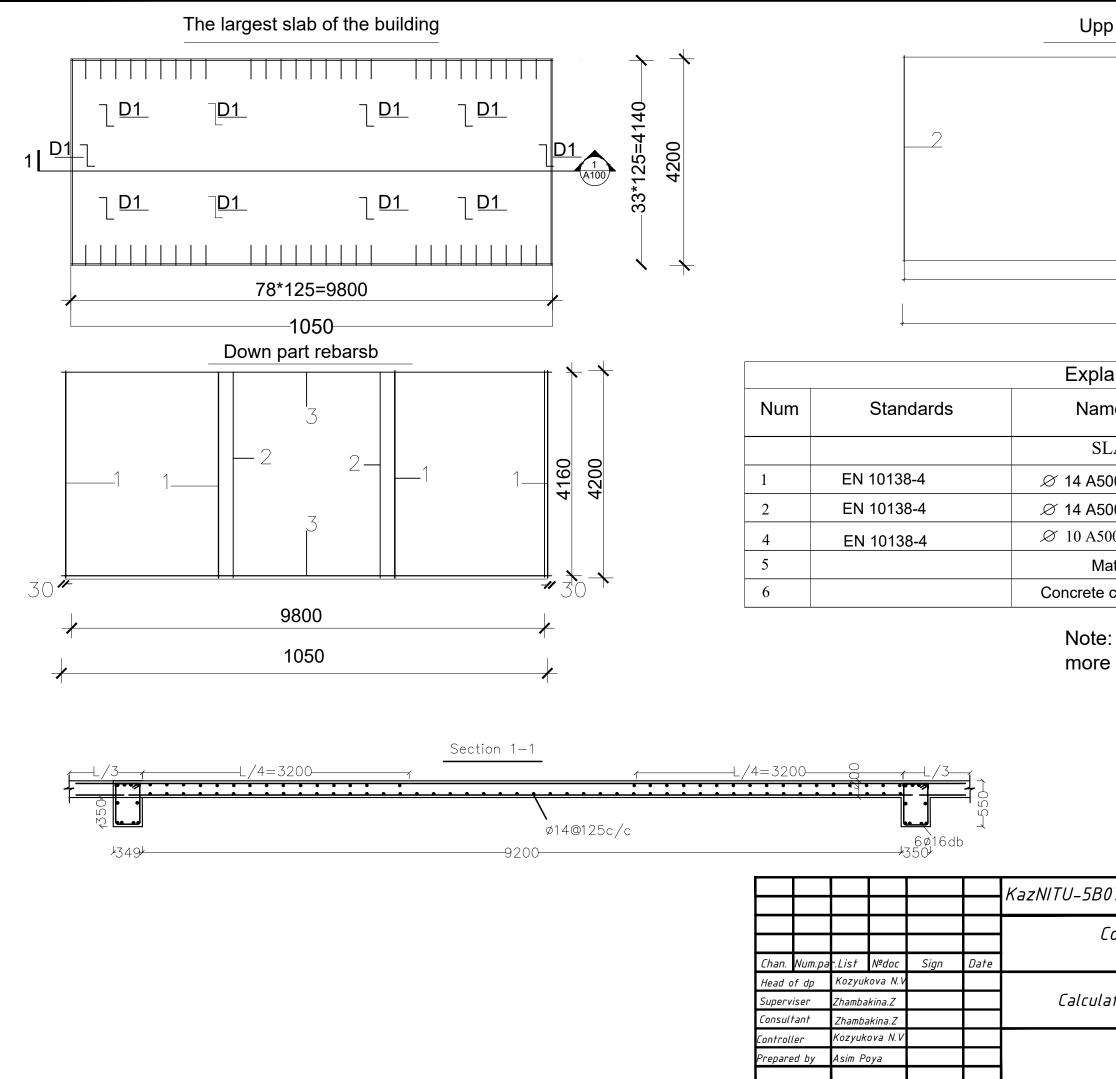

ΡΩΟΙΟΕΕΟ ΒΥ ΑΝ Αυτορεςκ στυρεντ νεrsion




формат АЗ



ō



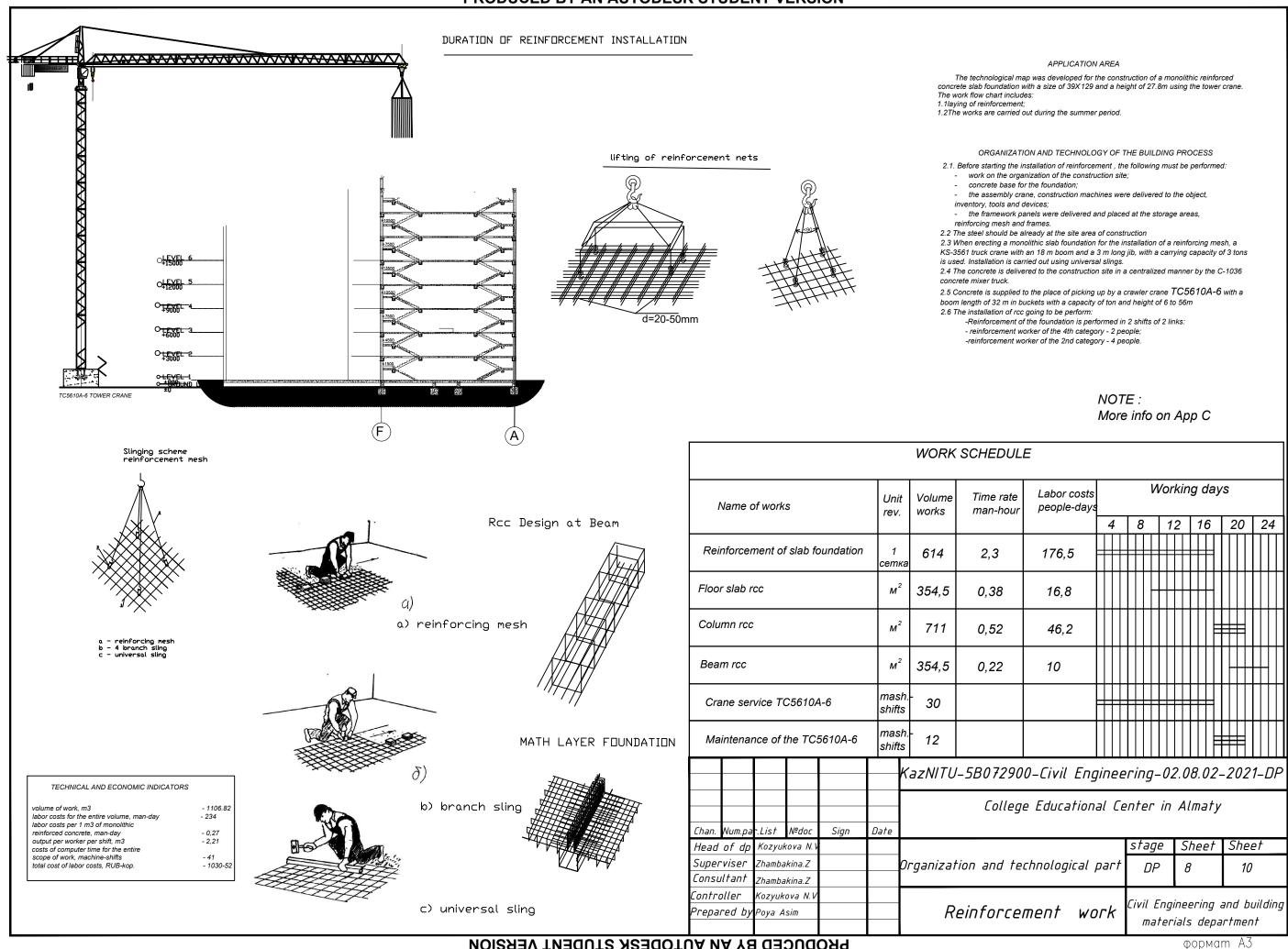
2 А = 440 мм; В = 370 мм;	[1		1		
x = 60 MM; L=1.8M	Num		Sta	ndards		Name		qua	Wei	ght (Kg)	Note
72 А = 240 мм; В = 240 мм;						<u>C1</u>					
х = 60 мм; х' = 72 мм.	1	El	N 1013	38-4		Ø 22 A500	L= 3300	8	33.85		270.8
L =1.2m	2 EN 10138-4			<i>⊗</i> 10 A500	L= 1900	6	6.99		41.94		
	3	E	N 101	38-4		Ø 10 A500	L=1300	14	6.99		97.86
						Materials					
ement of rebar's						Concrete class C	30				
Sketch	F					KazNITU-5B072900	-Civil Eng	gineel	ring-0.	2.08.02.2	2021–DI
2 A = 440 мм; B = 370 мм; x = 60 мм;		,.,				College	Educatio	onal (enter	in Alma	aty
L =1.8m	Chan. Num.pa Head of dp	1	№doc kova N.V	Sign	Date			5	stage	Sheef S	Sheet
db=72	Superviser	Zhamba				Calculation a	nd Design		DP	6	10
A = 240 мм; B = 240 мм; * x = 60 мм; x' = 72 мм	Consultant		akina.Z						2.	Ĵ	
x = 60 мм; x' = 72 мм. L =1.2m	Controller Prepared by	Kozyuk Asim P	ova N.V oya			Column A	- 1	l		ction and ials depar	-
ΛΟΤΟΡΕSK STUDENT VERSION			אל							формат	

steel consumption, kg							
rcing products							
ss armature							
A500							
N 10138-4	Total						
	Ø22	total					
	33.7	269.6	408.9				

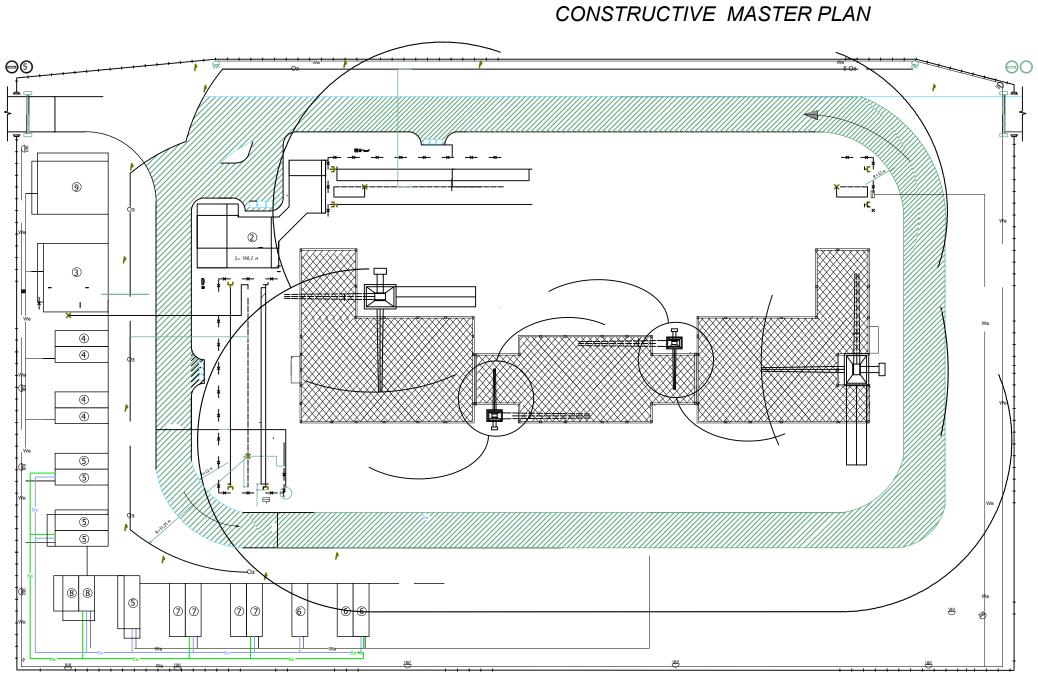
ΡΑΟDUCED ΒΥ ΑΝ ΑυτορέςΚ STUDENT VERSION

Upp part rebars			
		2	4140
			×
9740			· P
9800			
xplanation			
Name	qua	Weight (Kg)	Note

Name		qua	Weight (Kg)	Note
SLA <u>B</u> 10-11				
A500	L= 1050	88	5.06	446
A500	L=4450	38	5.06	192.2
A500	L= 1000	14	6.99	97.86
Materials				
ete class C30				


more information on the APP 2

KazNITU-5B072900-Civil Engineering-02.08.02.2021-DP


College Educational Center in Almaty

		формат АЗ				
culation and Design DP 7 10	Slab	Construction and building				
	culation and Design	DP	7	10		
stage Sheet Sheet		stage	Sheet	Sheet		

PRODUCED BY AN AUTODESK STUDENT VERSION

ΡΩΟΡΟΕΕΡ ΒΥ ΑΝ Αυτορεσκ στυρεντ νεrsion

No	Work process	permanently	Temporary	
1	The price to pay	Stable		
2	Open warehouses and initiatives			Γ
3	Office and dispatching		Temporary	
4	Meeting room		Temporary	Γ
4	Dining and drying room		Temporary	
5	Room for heating and drying		Temporary	-
6	Wardrobe and bathroom		Temporary	
7	Restroom		Temporary	
7	Material warehouse		Temporary	
8	Instrument room		Temporary	
9	Place of control load		Temporary	

NO	Name of indicators	Measurement symptoms	Volume
1	Total labor costs	day	102.5
2	Total duration of work	day	54
3	The total cost of installation work	\$ 12.5/8hr*2	1350

						KazNITU-5B072900-Civil Engineering-02.08.02-2021-DP										
						College Educational Center in Almaty										
Chan.	Num.pa	List	№doc	Sign	Date	te										
Head	Head of dp Kozyukova N Superviser Zhambakina.Z		nd of dp Kozyukova N.V						stage	Sheet	Sheet					
Super			erviser Zhamba		nkina.Z			Oraganization and technological part	aganization and technological part DP 9							
Consi	sultant _{Zhambakina.} Z				, , , , , , , , , , , , , , , , , , ,	21	-	10								
Contr	ntroller Kozyukova N.V		troller Kozyukova N.V						Civil Engineering and building							
Prepa	pared by Poya Asim				Constructive master Plane	-	-									
				materials department												
IA YA	EA mamqop															

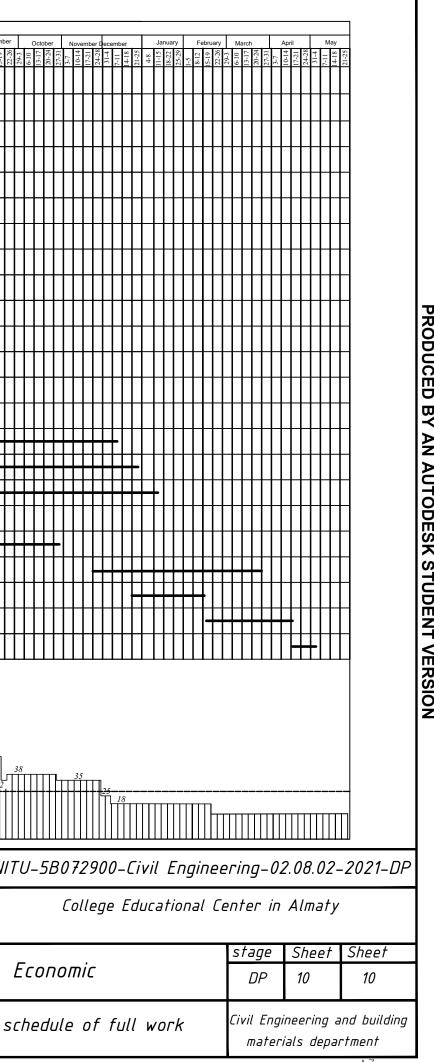
PRODUCED BY AN AUTODESK STUDENT VERSION

ΡΕΟΡΟΚΕΡ ΒΥ ΑΝ Αυτορές κατυρέντ νεκαιον

NO	ABBREVIATIONS	EXPLATION								
1	R	transformer station								
2		power distribution cabinet								
3		touching the concrete mix &receiving area								
4	D	fire extinguisher								
5	9	barrel with water								
6	ז	box with sand								
7	<u> </u>	stand with load fixing schemes								
8	P	special signs								
9	[]	barrier								
10	0	5 speed limit 5 km / h								
11		access is prohibited								
12	_K _	permanent sewerage								
13	—кв —	temporary sewerage								
14	<u>—</u> B —	permanent water supply								
15	—	temporary water supply								
16	W	permanent transmission line								
17		temporary transmission line								
18	産	searchlight								
19		temporary enclosure								
20	٩	fire hydrant								
Те	Technology - economic indicators									

Technology - economic indicators											
No	Name of indicators	Measurement signs	Volume								
1	Total using area for building	m²	11661								
2	Construction area	m²	1029								
3	Construction factor	%	0.08								
4	Length of temporary roads	m ²	1264								
5	Length of temporary water pipes	m	63.2								
6	Temporary power transmission system length		364								
7	Length of temporary sewer	m ^{^3}	300								

PRODUCED BY AN AUTODESK STUDENT VERSION CALENDAR PLAN


		Scope o		Labor	Necessary m	achines	Working	Shift										_,				,		20	021-202	22			_,		_
Types of work	Mea one	asure Tł	ie num	cost adday	Marks	Num of Machine	number	number	Duration day	Janu 6-10 13-17	20-24 au	Febr 10-14	nary 24-28	March 8-13 8-13	22-26	29-2 2-9-2	19-23	26-30 2-6	9-13 May	23-27 2-6	June 9-13 16-20	23-27 30-3	July	20-24	4.8	ugust	Sel 2-7-72	ptembe	22-26 = 29-3 6-10	Octob	20-471 m
Stage of preparatory work		-	-	688,11	-	-	15	3	15	┝╋╋╸																		Π	Π	Π	
Production of potholes	10	000м³	1,34	1,26	Excavator ЭО-4224	1	1	2	1		\mathbf{F}					Π				Π	Π		Π				Π	Π	Π	Π	
Manual tillage		M ³	41	10,15	-	-	5	1	2		-				Π	П	Π	Τ	Π	Π	Π		Π				П	Π	Π	Π	
Reinforced concrete foundation		шт.	438	47,1	Concrete pum 24 M4 XH	2	10	1	5		+		-															\prod		\Box	
Waterproofing of the underground section	10	ОО <i>м</i> ²	4,41	36,13	-	-	3	2	4		•	-																			
Installation of external engineering systems	s	-	-	1146,9	-	-	11	1	104		-											-									
Filling the soil tension	10	00 <i>м</i> ³	0,2	0,91	Bulldozer	3	1	1	1				-																		
Surface constructions of the building concreting		м3	4176,8	5570,8	Tower crane	2	15	3	93			-									+										
Reinforced concrete surface section installation of structures		шт.	87	66,9	Crane TW-11	2	10	1	7									+			+										
Fill door and window openings		M ²	3651,4	610,8	-	-	14	1	44									-	╟												
Installation of process equipment		-	-	917,5	-	-	11	2	42																	+					
Sanitary works		-	-	1410,8	-	-	17	2	41																						
Roofing works	10	ОО <i>М</i> ²	16,88	76	-	-	5	1	15												┨╋		•								
Sound and insulation of the floor		M ²	10446,5	287,1	-	-	5	2	29												┨┢		H	+							
Landscaping of the territory		-	-	573,4	-	-	12	1	48													+	H			+	++	∄	╈	॑	
Making a cement drawer under the floor		M ²	9016	161,2	-	-	6	1	26													•	H				+	+	╈	H	
Electrical installation work		-	-	522,5	-	-	10	2	26														॑	+	+	+	╈	₩	╈	₩	
Slab contraction joints should intersect at the openings for columns	1	м2	2205	297,7	-	-	5	2	30															+			+	\prod		\Box	
Plastering of walls, ceilings and slopes		M ²	36924	3206,7	-	-	25	3	43																		H	╋	╈	H	-
Painting of facades	10	00м2	47,7	176,49	-	-	8	2	11																						
Making linoleum floors		M ²	6152	294,5	-	-	8	1	37																						
Walls, ceilings and sewers painting		M ²	6050	625,83	-	-	22	1	28																						
Maintenance of power lines		-	-	209	-	-	18	1	12																						
									2	Î	E	Ξn	าต	Ιοι	/e	es	sh	ift	S	ch	nec	du	le								
																			Г	48	╷╢		ĬĬſ	Πr	52	47					

Technical and economic indicators

Name of indicators	Measurement .unit	Indicator							KazNITU-5		
Duration of construction	month	16									
Total labor intensity	manday	21945	Chan	Num.pa	rlist	№doc	Sign	Date			
Own works Iabor intensity	manday./m	3 0.39		Head of dp				rova N.V		bure	
			Superviser		Zhamba	akina.Z] Ecol		
Workers' movement	-	1,1.56	Consultant Zhambakina.Z								
non-uniform coefficient			Contro	ller	Kozyu	kova N.V	,				
Shift coefficient	-	1.045	Prepared by		Poya A	sim			schea		
									1		

North=23

ΡΑΟDUCED ΒΥ ΑΝ Αυτοdesk student version

формат АЗ

RESPONSE

OF THE SUPERVISOR

for the graduation project Asim Poya 5B072900 – Civil Engineering

Topic: «College building with the use of kinematic supports in Almaty»

Student Asim Poya completed the diploma project of the college in Almaty. The complexity of this topic lies in the seismicity of the city and the choice of the type of foundation. Unfortunately, when issuing the task for the design and construction part of the building, the columns and floor slabs were determined for the calculation of the structure. Asim P. successfully coped with this task, but the special emphasis in the name was in the kinematic supports of the building, but this section was not included in the design and construction part.

Student Asim Poya completed the diploma project at a good level. All sections of the project have been developed and calculated. Calculations of the structural section were made in accordance with the new norms of the Republic of Kazakhstan, taking into account the seismic load and the specifics of Almaty. A technological section has been developed, technical maps, a calendar plan, and a construction plan have been completed. All sections of the diploma project are completed in full.

The diploma project is completed at a good level and meets the requirements for bachelor's theses. Student Asim Poya deserves a good grade.

Supervisor

Candidate of technical sciences, assistant professor

Zhambakina Z.M.

«30» may 2021 yr.

Протокол анализа Отчета подобия Научным руководителем

Заявляю, что я ознакомился(-ась) с Полным отчетом подобия, который был сгенерирован Системой выявления и предотвращения плагиата в отношении работы:

Автор: Поя Асим

Hasbahue: College building with the use of kinematic supports in Almaty

Координатор:Зауреш Жамбакина

Коэффициент подобия 1:0.3

Коэффициент подобия 2:0

Замена букв:54

Интервалы:4

Микропробелы:3

Белые знаки: 0

После анализа Отчета подобия констатирую следующее:

- обнаруженные в работе заимствования являются добросовестными и не обладают признаками плагиата. В связи с чем, признаю работу самостоятельной и допускаю ее к защите;
- □ обнаруженные в работе заимствования не обладают признаками плагиата, но их чрезмерное количество вызывает сомнения в отношении ценности работы по существу и отсутствием самостоятельности ее автора. В связи с чем, работа должна быть вновь отредактирована с целью ограничения заимствований;

обнаруженные в работе заимствования являются недобросовестными и обладают признаками плагиата, или в ней содержатся преднамеренные искажения текста, указывающие на попытки сокрытия недобросовестных заимствований. В связи с чем, не допускаю работу к защите.

Обоснование:

.....

.....

.....

Дата

Подпись Научного руководителя

Протокол анализа Отчета подобия

заведующего кафедрой / начальника структурного подразделения

Заведующий кафедрой / начальник структурного подразделения заявляет, что ознакомился(-ась) с Полным отчетом подобия, который был сгенерирован Системой выявления и предотвращения плагиата в отношении работы:

Автор: Поя Асим

Hasbahue: College building with the use of kinematic supports in Almaty

Координатор: Зауреш Жамбакина

Коэффициент подобия 1:0.3

Коэффициент подобия 2:0

Замена букв:54

Интервалы:4

Микропробелы:3

Белые знаки:0

После анализа отчета подобия заведующий кафедрой / начальник структурного подразделения констатирует следующее:

□ обнаруженные в работе заимствования являются добросовестными и не обладают признаками плагиата. В связи с чем, работа признается самостоятельной и допускается к защите;

□ обнаруженные в работе заимствования не обладают признаками плагиата, но их чрезмерное количество вызывает сомнения в отношении ценности работы по существу и отсутствием самостоятельности ее автора. В связи с чем, работа должна быть вновь отредактирована с целью ограничения заимствований;

□ обнаруженные в работе заимствования являются недобросовестными и обладают признаками плагиата, или в ней содержатся преднамеренные искажения текста, указывающие на попытки сокрытия недобросовестных заимствований. В связи с чем, работа не допускается к защите.

Обоснование:

••••••

.....

начальника структурного подразделения

Окончательное решение в отношении допуска к защите, включая обоснование:

Дата

Подпись заведующего кафедрой /

начальника структурного подразделения